ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ビッグバンとビッグリップ

ショートカット: 違い類似点ジャカード類似性係数参考文献

ビッグバンとビッグリップの違い

ビッグバン vs. ビッグリップ

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。. ビッグリップ(Big Rip)は、2003年に公表された宇宙の終焉についての仮説である。恒星や銀河から原子や亜原子粒子に至るまで、宇宙の全ての物質は、宇宙の加速のために未来のある時点でバラバラになる。理論的には、宇宙の計量は、有限な時間で無限大になりうる。.

ビッグバンとビッグリップ間の類似点

ビッグバンとビッグリップは(ユニオンペディアに)共通で15ものを持っています: 原子定常宇宙論宇宙の終焉ハッブルの法則ビッグクランチフリードマン・ルメートル・ロバートソン・ウォーカー計量ダークエネルギーエネルギー光速状態方程式 (宇宙論)物質銀河重力恒星2003年

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

ビッグバンと原子 · ビッグリップと原子 · 続きを見る »

定常宇宙論

定常宇宙論(ていじょううちゅうろん、steady state cosmology)とは、1948年にフレッド・ホイル、トーマス・ゴールド、ヘルマン・ボンディらによって提唱された宇宙論のモデルであり、(宇宙は膨張しているが)無からの物質の創生により、任意の空間の質量(大雑把に言えば宇宙空間に分布する銀河の数)は常に一定に保たれ、宇宙の基本的な構造は時間によって変化することはない、とするものである。 2005年現在、ビッグバン理論(ビッグバン仮説)が有力と考えられることが多く、支持する多くの科学者らから「標準的宇宙論モデル」と呼ばれており、このような立場からは定常宇宙論は「非標準的宇宙論 (non-standard cosmology)」の一つと見なされている。.

ビッグバンと定常宇宙論 · ビッグリップと定常宇宙論 · 続きを見る »

宇宙の終焉

宇宙の終焉(うちゅうのしゅうえん、Ultimate fate of the universe)とは、宇宙物理学における、宇宙の進化の最終段階についての議論である。さまざまな科学理論により、さまざまな終焉が描かれており、存続期間も有限、無限の両方が提示されている。 宇宙はビッグバンから始まったという仮説は、多くの科学者により合意を獲得している。宇宙の終焉は、宇宙の質量 / エネルギー、宇宙の平均密度、宇宙の膨張率といった物理的性質に依存している。.

ビッグバンと宇宙の終焉 · ビッグリップと宇宙の終焉 · 続きを見る »

ハッブルの法則

ハッブルの法則(ハッブルのほうそく)とは、天体が我々から遠ざかる速さとその距離が正比例することを表す法則である。1929年、エドウィン・ハッブルとミルトン・ヒューメイソンによって発表された。この発見は、宇宙は膨張しているものであるとする説を強力に支持するものとなった。 v を天体が我々から遠ざかる速さ(後退速度)、D を我々からその天体までの距離とすると、 となる。ここで比例定数 H_0 はハッブル定数 (Hubble constant) と呼ばれ、現在の宇宙の膨張速度を決める。 ハッブル定数は時間の逆数の次元 T をもち、通常はキロメートル毎秒毎メガパーセク(記号: km/s/Mpc)が単位として用いられる。2014年現在最も正確な値は、プランクの観測による である。換言すれば、銀河は実視等級20等程度までスペクトル観測が可能であるが、いずれの銀河もそのスペクトルは赤のほうにずれている、これを赤方偏移という。これがドップラー効果とすれば銀河までの距離と後退速度の間に一定の法則性を発見したものといえる。 1927年にジョルジュ・ルメートルもハッブルと同等の法則を提唱していたが、フランス語のマイナーな雑誌に掲載されたためそのときは注目されなかった。ルメートルはスライファーとハッブルの観測データを用いている。.

ハッブルの法則とビッグバン · ハッブルの法則とビッグリップ · 続きを見る »

ビッグクランチ

ビッグクランチ ビッグクランチ前の宇宙 ビッグクランチ(Big Crunch)とは、予測される宇宙の終焉の一形態である。現在考えられている宇宙モデルでは、宇宙はビッグバンによって膨張を開始したとされているが、宇宙全体に含まれる質量(エネルギー)がある値よりも大きい場合には、自身の持つ重力によっていずれ膨張から収縮に転じ、宇宙にある全ての物質と時空は無次元の特異点に収束すると考えられる。 ただし、プランク長と呼ばれる微小な長さよりも十分に小さくなった宇宙を理論的に取り扱うためには、一般相対性理論に加えて量子力学的効果をとり入れる必要がある。このような理論を量子重力理論と呼ぶが、2005年現在では完全な量子重力理論はまだ構築されていないため、ビッグクランチによって何が起こるかを物理学的に記述することはできていない。ビッグクランチの後、「振動宇宙」(Oscillatory universe) として再び宇宙が膨張に転じるかもしれないと考える科学者もいる。 宇宙がビッグクランチを迎えるのか、それとも永遠に膨張を続けるのかについては、以下の2点に依存している。.

ビッグクランチとビッグバン · ビッグクランチとビッグリップ · 続きを見る »

フリードマン・ルメートル・ロバートソン・ウォーカー計量

フリードマン・ルメートル・ロバートソン・ウォーカー計量(フリードマン・ルメートル・ロバートソン・ウォーカーけいりょう、、略称 FLRW計量)は、一般相対性理論のアインシュタイン方程式の厳密解の一つで、一様・等方な物質分布のもとで、膨張または収縮する宇宙モデルを表す。計量 とは、相対性理論に現れる不変な時空距離のこと。.

ビッグバンとフリードマン・ルメートル・ロバートソン・ウォーカー計量 · ビッグリップとフリードマン・ルメートル・ロバートソン・ウォーカー計量 · 続きを見る »

ダークエネルギー

ダークエネルギー(ダークエナジー、暗黒エネルギー、dark energy)とは、現代宇宙論および天文学において、宇宙全体に浸透し、宇宙の拡張を加速していると考えられる仮説上のエネルギーである。2013年までに発表されたプランクの観測結果からは、宇宙の質量とエネルギーに占める割合は、原子等の通常の物質が4.9%、暗黒物質(ダークマター)が26.8%、ダークエネルギーが68.3%と算定されている。.

ダークエネルギーとビッグバン · ダークエネルギーとビッグリップ · 続きを見る »

エネルギー

ネルギー(、)とは、.

エネルギーとビッグバン · エネルギーとビッグリップ · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

ビッグバンと光速 · ビッグリップと光速 · 続きを見る »

状態方程式 (宇宙論)

宇宙論における完全流体の状態方程式(じょうたいほうていしき)は、エネルギー密度 \! \rho に対する圧力 \! p の比に等しい無次元数 \! w で特徴づけられ、次式で与えられる。 これは、熱力学的な状態方程式と理想気体の法則とも緊密に関係する。.

ビッグバンと状態方程式 (宇宙論) · ビッグリップと状態方程式 (宇宙論) · 続きを見る »

物質

物質(ぶっしつ)は、.

ビッグバンと物質 · ビッグリップと物質 · 続きを見る »

銀河

銀河(ぎんが、galaxy)は、恒星やコンパクト星、ガス状の星間物質や宇宙塵、そして重要な働きをするが正体が詳しく分かっていない暗黒物質(ダークマター)などが重力によって拘束された巨大な天体である。英語「galaxy」は、ギリシア語でミルクを意味する「gála、γᾰ́λᾰ」から派生した「galaxias、γαλαξίας」を語源とする。英語で天の川を指す「Milky Way」はラテン語「Via Lactea」の翻訳借用であるが、このラテン語もギリシア語の「galaxías kýklos、γαλαξίας κύκλος」から来ている。 1,000万 (107) 程度の星々で成り立つ矮小銀河から、100兆 (1014) 個の星々を持つ巨大なものまであり、これら星々は恒星系、星団などを作り、その間には星間物質や宇宙塵が集まる星間雲、宇宙線が満ちており、質量の約90%を暗黒物質が占めるものがほとんどである。観測結果によれば、すべてではなくともほとんどの銀河の中心には超大質量ブラックホールが存在すると考えられている。これは、いくつかの銀河で見つかる活動銀河の根源的な動力と考えられ、銀河系もこの一例に当たると思われる。 歴史上、その具体的な形状を元に分類され、視覚的な形態論を以って考察されてきたが、一般的な形態は、楕円形の光の輪郭を持つ楕円銀河である。ほかに渦巻銀河(細かな粒が集まった、曲がった腕を持つ)や不規則銀河(不規則でまれな形状を持ち、近くの銀河から引力の影響を受けて形を崩したもの)等に分類される。近接する銀河の間に働く相互作用は、時に星形成を盛んに誘発しながらスターバースト銀河へと発達し、最終的に合体する場合もある。特定の構造を持たない小規模な銀河は不規則銀河に分類される。 観測可能な宇宙の範囲だけでも、少なくとも1,700億個が存在すると考えられている。大部分の直径は1,000から100,000パーセクであり、中には数百万パーセクにもなるような巨大なものもある。は、13当たり平均1個未満の原子が存在するに過ぎない非常に希薄なガス領域である。ほとんどは階層的な集団を形成し、これらは銀河団やさらに多くが集まった超銀河団として知られている。さらに大規模な構造では、銀河団は超空洞と呼ばれる銀河が存在しない領域を取り囲む銀河フィラメントを形成する。.

ビッグバンと銀河 · ビッグリップと銀河 · 続きを見る »

重力

重力(じゅうりょく)とは、.

ビッグバンと重力 · ビッグリップと重力 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

ビッグバンと恒星 · ビッグリップと恒星 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

2003年とビッグバン · 2003年とビッグリップ · 続きを見る »

上記のリストは以下の質問に答えます

ビッグバンとビッグリップの間の比較

ビッグリップが31を有しているビッグバンは、203の関係を有しています。 彼らは一般的な15で持っているように、ジャカード指数は6.41%です = 15 / (203 + 31)。

参考文献

この記事では、ビッグバンとビッグリップとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »