ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ビッグバンと恒星

ショートカット: 違い類似点ジャカード類似性係数参考文献

ビッグバンと恒星の違い

ビッグバン vs. 恒星

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。. 恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

ビッグバンと恒星間の類似点

ビッグバンと恒星は(ユニオンペディアに)共通で19ものを持っています: ヘリウムブラックホールパーセクドップラー効果エネルギーキロメートルスペクトル窒素質量超新星黒体放射重力酸素X線恒星風恒星進化論水素放射

ヘリウム

ヘリウム (新ラテン語: helium, helium )は、原子番号 2、原子量 4.00260、元素記号 He の元素である。 無色、無臭、無味、無毒(酸欠を除く)で最も軽い希ガス元素である。すべての元素の中で最も沸点が低く、加圧下でしか固体にならない。ヘリウムは不活性の単原子ガスとして存在する。また、存在量は水素に次いで宇宙で2番目に多い。ヘリウムは地球の大気の 0.0005 % を占め、鉱物やミネラルウォーターの中にも溶け込んでいる。天然ガスと共に豊富に産出し、気球や小型飛行船のとして用いられたり、液体ヘリウムを超伝導用の低温素材としたり、大深度へ潜る際の呼吸ガスとして用いられている。.

ビッグバンとヘリウム · ヘリウムと恒星 · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

ビッグバンとブラックホール · ブラックホールと恒星 · 続きを見る »

パーセク

パーセク(、記号: pc)は、距離を表す計量単位であり、約 (約3.26光年)である。主として天文学で使われる。 1981年までは天文学の分野に限り国際単位系 (SI) と併用してよい単位とされていたが、現在ではSIには含まれていない単位である。 年周視差が1秒角 (3600分の1度) となる距離が1パーセクである。すなわち、1天文単位 (au) の長さが1秒角の角度を張るような距離を1パーセクと定義する。 1 パーセクは次の値に等しい。.

パーセクとビッグバン · パーセクと恒星 · 続きを見る »

ドップラー効果

ドップラー効果(ドップラーこうか、Doppler effect)またはドップラーシフト(Doppler shift)とは、波(音波や電磁波など)の発生源(音源・光源など)と観測者との相対的な速度の存在によって、波の周波数が異なって観測される現象をいう。.

ドップラー効果とビッグバン · ドップラー効果と恒星 · 続きを見る »

エネルギー

ネルギー(、)とは、.

エネルギーとビッグバン · エネルギーと恒星 · 続きを見る »

キロメートル

メートル(kilometre、米国のみ1977年以降 kilometer、記号:km)は、国際単位系 (SI) の長さの単位で、1000 メートルに等しい。 km の記号は、長さのSI基本単位であるメートル m に 103 倍を表すSI接頭辞であるキロ k を付けたものである。 ヘクトメートル ≪ キロメートル ≪ メガメートル.

キロメートルとビッグバン · キロメートルと恒星 · 続きを見る »

スペクトル

ペクトル()とは、複雑な情報や信号をその成分に分解し、成分ごとの大小に従って配列したもののことである。2次元以上で図示されることが多く、その図自体のことをスペクトルと呼ぶこともある。 様々な領域で用いられる用語で、様々な意味を持つ。現代的な意味のスペクトルは、分光スペクトルか、それから派生した意味のものが多い。.

スペクトルとビッグバン · スペクトルと恒星 · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

ビッグバンと窒素 · 恒星と窒素 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

ビッグバンと質量 · 恒星と質量 · 続きを見る »

超新星

プラーの超新星 (SN 1604) の超新星残骸。スピッツァー宇宙望遠鏡、ハッブル宇宙望遠鏡およびチャンドラX線天文台による画像の合成画像。 超新星(ちょうしんせい、)は、大質量の恒星が、その一生を終えるときに起こす大規模な爆発現象である。.

ビッグバンと超新星 · 恒星と超新星 · 続きを見る »

黒体放射

黒体放射()とは黒体が放出する熱放射で黒体の温度のみで定まり、実在する物体の放射度は、概して黒体の放射度よりも小さく、黒体放射の波長はプランクの放射式によって理論的に定まる。 温度が低いときは赤っぽく、温度が高いほど青白くなる。夜空に輝く星々も青白い星ほど温度が高い。温度はK(ケルビン)で表示される。 理想的な黒体放射をもっとも再現するとされる空洞放射が温度のみに依存するという法則は、1859年にグスタフ・キルヒホフにより発見された。以来、空洞放射のスペクトルを説明する理論が研究され、最終的に1900年にマックス・プランクによりプランク分布が発見されたことで、その理論が完成された。 物理的に黒体放射をプランク分布で説明するためには、黒体が電磁波を放出する(電気双極子が振動する)ときの振動子の量子化を仮定する必要がある(プランクの法則)。つまり、振動子が持ちうるエネルギー は振動数 の整数倍に比例しなければならない。 この比例定数 は、後にプランク定数とよばれ、物理学の基本定数となった。これは、物理量は連続な値をとり量子化されない、とする古典力学と反する仮定であったが、1905年にアルベルト・アインシュタインがこのプランクの量子化の仮定と光子の概念とを用いて光電効果を説明したことにより、この量子化の仮定に基づいた量子力学が築かれることとなった。.

ビッグバンと黒体放射 · 恒星と黒体放射 · 続きを見る »

重力

重力(じゅうりょく)とは、.

ビッグバンと重力 · 恒星と重力 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

ビッグバンと酸素 · 恒星と酸素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

ビッグバンと鉄 · 恒星と鉄 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

X線とビッグバン · X線と恒星 · 続きを見る »

恒星風

恒星風(こうせいふう)あるいは単に星風(せいふう)とは、恒星表面から吹き出すガスの流れのことである。太陽からも太陽風という形で常時ガスが放出されており、太陽フレアの際には太陽風の速度が上昇する。 恒星は自分自身の重力によってガスを保持している。しかし表面でガスの圧力や輻射圧(光圧)、磁気的な圧力などが高くなることによって一部のガスが重力を振り切って恒星から放出される。 おうし座T型星においては、主系列星に移行する途中のある時期に急激に恒星風が強くなり周囲のガスを吹き飛ばすと考えられている。 赤色巨星の表面においては重力が弱いために容易にガスが放出される。そのため赤色巨星が恒星風として放出する質量は太陽よりも数万倍も多い。 また大質量星においては星の表面が高温であるためガスの圧力や輻射圧が高く恒星風が強い。このような星が恒星風によって水素の外層を失ったと考えられるのがウォルフ・ライエ星である。.

ビッグバンと恒星風 · 恒星と恒星風 · 続きを見る »

恒星進化論

天体物理学において恒星進化論(こうせいしんかろん、英語:stellar evolution)とは、恒星の誕生から最期までにおこる恒星内の構造の変化を扱う理論である。 恒星進化論においては、恒星を生物になぞらえてその誕生から最期までを恒星の一生とし、幼年期の星、壮年期の星、老年期の星、星の死といった用語を用いる。恒星進化論の中で用いられている進化も生物になぞらえた言葉であるが、生物の進化とは異なり、世代を超えた変化ではなく恒星の一生の中での変化を表している。 恒星は自分自身の重力があるので常に収縮しようとする。しかし、収縮すると重力によるポテンシャルエネルギーが熱に変わる。また充分に高温高圧になれば核融合反応が起こり熱が発生する。これらの熱によってガスの温度が上昇すればガスは膨張しようとする。このようにして収縮と膨張が釣り合ったところで恒星は安定している。重力と核融合によるエネルギーを使い果たすと、恒星は収縮をとどめることができず最期を迎える。 以下に現在の恒星進化論による恒星の一生を示す。.

ビッグバンと恒星進化論 · 恒星と恒星進化論 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

ビッグバンと水素 · 恒星と水素 · 続きを見る »

放射

放射(ほうしゃ,radiation)は、粒子線(アルファ線、ベータ線など)や電磁波(光や熱なども含む)、重力波などが放出されること、または放出されたそのものをいう。かつての日本では、輻射(ふくしゃ)とされていたが、太平洋戦争後の当用漢字表に「輻」の字が含まれなかった。このため、当初はやむを得ず「ふく射」と表記されていたが、その後、「放射」と表現が変更された。なお、「輻」は現在の常用漢字にも含まれていない。.

ビッグバンと放射 · 恒星と放射 · 続きを見る »

上記のリストは以下の質問に答えます

ビッグバンと恒星の間の比較

恒星が149を有しているビッグバンは、203の関係を有しています。 彼らは一般的な19で持っているように、ジャカード指数は5.40%です = 19 / (203 + 149)。

参考文献

この記事では、ビッグバンと恒星との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »