ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

バリウムと鉛

ショートカット: 違い類似点ジャカード類似性係数参考文献

バリウムと鉛の違い

バリウム vs. 鉛

バリウム(barium )は、原子番号 56 の元素。元素記号は Ba。アルカリ土類金属のひとつで、単体では銀白色の軟らかい金属。他のアルカリ土類金属元素と類似した性質を示すが、カルシウムやストロンチウムと比べ反応性は高い。化学的性質としては+2価の希土類イオンとも類似した性質を示す。アルカリ土類金属としては密度が大きく重いため、ギリシャ語で「重い」を意味する βαρύς (barys) にちなんで命名された。ただし、金属バリウムの比重は約3.5であるため軽金属に分類される。地殻における存在量は豊富であり、重晶石(硫酸バリウム)などの鉱石として産出する。確認埋蔵量の48.6%を中国が占めており、生産量も50%以上が中国によるものである。バリウムの最大の用途は油井やガス井を採掘するためのにおける加重剤であり、重晶石を砕いたバライト粉が利用される。 硫酸バリウム以外の可溶性バリウム塩には毒性があり、多量のバリウムを摂取するとカリウムチャネルをバリウムイオンが阻害することによって神経系への影響が生じる。そのためバリウムは毒物及び劇物取締法などにおいて規制の対象となっている。. 鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

バリウムと鉛間の類似点

バリウムと鉛は(ユニオンペディアに)共通で28ものを持っています: 厚生労働省原子番号半減期合金人工放射性元素亜鉛地殻ランタンブラウン管ヒ素ビスマスキセノンスズ元素元素記号硝酸硫化物硫黄炭素炭酸塩選鉱顔料黒鉱黄色金属間化合物電子捕獲電極

厚生労働省

厚生労働省(こうせいろうどうしょう、略称:厚労省(こうろうしょう)、Ministry of Health, Labour and Welfare、略称:MHLW)は、国家行政組織法が規定する「国の行政機関」である省の一つである。 健康・医療、子ども・子育て、福祉・介護、雇用・労働、年金に関する政策分野を主に所管する。 2001年(平成13年)1月の中央省庁再編により、厚生省と労働省を廃止・統合して誕生した。 その責務は「国民生活の保障及び向上を図り、並びに経済の発展に寄与するため、社会福祉、社会保障及び公衆衛生の向上及び増進並びに労働条件その他の労働者の働く環境の整備及び職業の確保を図ること」(厚生労働省設置法第3条第1項)および「引揚援護、戦傷病者、戦没者遺族、未帰還者留守家族等の援護及び旧陸海軍の残務の整理を行うこと」(同法第3条第2項)と規定されている。.

バリウムと厚生労働省 · 厚生労働省と鉛 · 続きを見る »

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

バリウムと原子番号 · 原子番号と鉛 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

バリウムと半減期 · 半減期と鉛 · 続きを見る »

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

バリウムと合金 · 合金と鉛 · 続きを見る »

年(ねん、とし、year)は、時間の単位の一つであり、春・夏・秋・冬、あるいは雨季・乾季という季節のめぐりが1年である。元来は春分点を基準に太陽が天球を一巡する周期であり、平均して約365.242 189日(2015年時点)である(太陽年)。 1年の長さを暦によって定義する方法が暦法であり、現在世界各国で用いられるグレゴリオ暦佐藤 (2009)、pp.77-81、世界統一暦の試み(現行暦)では、一年または「一ヵ年」を365日とするが、一年を366日とする閏年を400年間に97回設けることによって、一年の平均日数を365.2425日とする。 なお、天文学における時間の計量の単位としての「年」には通常、ユリウス年を用いる。ユリウス年は正確に31 557 600秒=365.25 d(d.

バリウムと年 · 年と鉛 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

バリウムと人工放射性元素 · 人工放射性元素と鉛 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

バリウムと亜鉛 · 亜鉛と鉛 · 続きを見る »

地殻

1.

バリウムと地殻 · 地殻と鉛 · 続きを見る »

ランタン

ランタン(Lanthan 、lanthanum )は、原子番号57の元素。元素記号は La。希土類元素の一つ。4f軌道を占有する電子は0個であるが、ランタノイド系列の最初の元素とされる。白色の金属で、常温、常圧で安定な結晶構造は、複六方最密充填構造(ABACスタッキング)。比重は6.17で、融点は918 、沸点は3420 。 空気中で表面が酸化され、高温では酸化ランタン(III) La2O3 となる。ハロゲン元素と反応し、水にはゆっくりと溶ける。酸には易溶。安定な原子価は+3価。 モナズ石(モナザイト)に含まれる。.

バリウムとランタン · ランタンと鉛 · 続きを見る »

ブラウン管

ラー受像管の断面図1.電子銃2.電子ビーム3.集束コイル(焦点調整)4.偏向コイル5.陽極端子6.シャドーマスク7.色蛍光体8.色蛍光体を内側から見た拡大図 ブラウン管(ブラウンかん)は、ドイツのカール・フェルディナント・ブラウンが発明した図像を表示する陰極線管を指す、日本語における通称である。 ブラウンによる発明は陰極線管自体の発明でもあり、陰極線管を総称してブラウン管と言うこともあり、逆に受像管をCRT(Cathode Ray Tube)と言ったりする。しかし、たとえばマジックアイも陰極線管の一種であるが、基本的にブラウン管の一種には含めない。.

バリウムとブラウン管 · ブラウン管と鉛 · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

バリウムとヒ素 · ヒ素と鉛 · 続きを見る »

ビスマス

ビスマス(bismuth)は原子番号83の元素。元素記号は Bi。第15族元素の一つ。日本名は蒼鉛。.

バリウムとビスマス · ビスマスと鉛 · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

キセノンとバリウム · キセノンと鉛 · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

スズとバリウム · スズと鉛 · 続きを見る »

元素

元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

バリウムと元素 · 元素と鉛 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

バリウムと元素記号 · 元素記号と鉛 · 続きを見る »

硝酸

硝酸(しょうさん、nitric acid)は窒素のオキソ酸で、化学式 HNO3 で表される。代表的な強酸の1つで、様々な金属と反応して塩を形成する。有機化合物のニトロ化に用いられる。硝酸は消防法第2条第7項及び別表第一第6類3号により危険物第6類に指定され、硝酸を 10 % 以上含有する溶液は医薬用外劇物にも指定されている。 濃硝酸に二酸化窒素、四酸化二窒素を溶かしたものは発煙硝酸、赤煙硝酸と呼ばれ、さらに強力な酸化力を持つ。その強力な酸化力を利用してロケットの酸化剤や推進剤として用いられる。.

バリウムと硝酸 · 硝酸と鉛 · 続きを見る »

硫化物

硫化物(りゅうかぶつ、sulfide/sulphide)とは、硫黄化合物のうち硫黄原子が最低酸化数である-2を持つものの総称。言い換えると、硫化水素 (H-S-H) の H を他の原子に置換した構造を持つ化合物である。普通は特に、硫黄の2価の陰イオン(硫化物イオン)と各種陽イオンから構成された塩の形をとる化合物、もしくは他の元素との無機化合物(硫化水素、二硫化炭素など)を指す。.

バリウムと硫化物 · 硫化物と鉛 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

バリウムと硫黄 · 硫黄と鉛 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

バリウムと炭素 · 炭素と鉛 · 続きを見る »

炭酸塩

炭酸イオンの球棒モデル 炭酸塩(たんさんえん、)は、炭酸イオン(、CO32−)を含む化合物の総称である。英語の carbonate は炭酸塩と炭酸イオンの他、炭酸エステル、炭酸塩化、炭化、飲料などに炭酸を加える操作のことも指す。無機炭素化合物の一種で、炭酸塩の中には、生物にとって重要な物質である炭酸カルシウムや、産業にとって重要な炭酸ナトリウムなどがある。炭酸塩はアルカリ金属以外は水に溶けないものが多い。一般に加熱により二酸化炭素を発生して金属酸化物を生じる。 \rm CaCO_3 \quad \overset \quad CaO + CO_2.

バリウムと炭酸塩 · 炭酸塩と鉛 · 続きを見る »

選鉱

選鉱(せんこう)は、採掘した鉱石を有用鉱物と不用鉱物(脈石)とに分離する作業。または、異なる複数種類の有用鉱物を互いに分離する作業。 選鉱は、製錬に持ち込む前の工程である。ただし、選鉱のみで目標の鉱物を高純度で得られる場合(ある種の非金属鉱物や自然金など)は、選鉱を最終工程とすることがある。選鉱を行わず、鉱石の乾燥処理のみで留めるグアノのようなケースもある。物理的な選別が困難なボーキサイトについては、選鉱工程の代わりにアルミナ精製などの化学処理工程を置く。 選鉱は、鉱物の物理的性質の違いを利用して行われる。鉱石や鉱物の種類に応じて様々な選鉱法があるが、最も広く行われているのは浮遊選鉱である。ただし、錫やタングステンなどの比重の大きい鉱物については、比重選鉱を適用することが多い。また、石綿の場合、空気(真空)選鉱と呼ばれる特殊な方法を用いる。金や水銀に関しては、産出状況によっては手選鉱(手選)のみで製錬に持ち込むこともある。手選鉱は、浮選選鉱や比重選鉱などの準備工程として行なわれることも多い。 選鉱はあくまでも鉱物の仕分けの過程であり、その前後で鉱物の化学組成は変化しない。.

バリウムと選鉱 · 選鉱と鉛 · 続きを見る »

顔料

粉末状の天然ウルトラマリン顔料 合成ウルトラマリン顔料は、化学組成が天然ウルトラマリンと同様であるが、純度などが異なる。 顔料(がんりょう、pigment)は、着色に用いる粉末で水や油に不溶のものの総称。着色に用いる粉末で水や油に溶けるものは染料と呼ばれる。 特定の波長の光を選択的に吸収することで、反射または透過する色を変化させる。蛍光顔料を除く、ほぼ全ての顔料の呈色プロセスは、自ら光を発する蛍光や燐光などのルミネセンスとは物理的に異なるプロセスである。 顔料は、塗料、インク、合成樹脂、織物、化粧品、食品などの着色に使われている。多くの場合粉末状にして使う。バインダー、ビークルあるいは展色剤と呼ばれる、接着剤や溶剤を主成分とする比較的無色の原料と混合するなどして、塗料やインクといった製品となる。実用的な分類であり、分野・領域によって、顔料として認知されている物質が異なる。 顔料の世界市場規模は2006年時点で740万トンだった。2006年の生産額は176億USドル(130億ユーロ)で、ヨーロッパが首位であり、それに北米とアジアが続いている。生産および需要の中心はアジア(中国とインド)に移りつつある。.

バリウムと顔料 · 鉛と顔料 · 続きを見る »

黒鉱

日本の黒鉱ベルトの分布 黒鉱(くろこう、kuroko、black ore)とは、日本海側の鉱山で採掘される外見の黒い鉱石の総称である。黒い鉱石の正体は、閃亜鉛鉱(ZnS)、方鉛鉱(PbS)、黄銅鉱(CuFeS2)などであり、それぞれ亜鉛や鉛、銅などの鉱石として広く採掘された。 黒鉱は海底へ噴出した熱水から沈殿した硫化物などが起源であると考えられている。日本国内に見られる黒鉱の大半は、新生代第三紀のグリーンタフ変動に伴って生成されている。黒鉱の周囲には金や銀などが濃集することから、江戸時代には主にそれら貴金属が、明治時代に入り精錬技術が向上するにつれて黒鉱自体が注目されるようになった。また、黒鉱は金属鉱物のみでなく、大量の沸石類や石膏、重晶石などを伴う。.

バリウムと黒鉱 · 鉛と黒鉱 · 続きを見る »

黄色

色い花。自然界におけるフィボナッチ数の例として使われる、ヒマワリ。 黄色(黃色、きいろ、オウショク)は、基本色名の一つであり、色の三原色の一つである。ヒマワリの花弁のような色。英語では yellow と言う。暖色の一つ。波長 570〜585 nm の単色光は黄色であり、長波長側は橙色に、短波長側は黄緑色に近付く。RGBで示すと赤と緑の中間の色。黄(き、オウ、コウ)は同義語。 現代日本語では一般に「黄色」(名詞)、「黄色い」(形容詞)と呼ぶ。これは小学校学習指導要領で使われ、母語として最初に学ぶ色名の一つである。しかし JIS 基本色名やマンセル色体系における公式名称は一般に黄色ではなく黄(黃、き)である。複合語内の形態素としては、黄緑、黄身、黄信号など、「黄」が少なくない。.

バリウムと黄色 · 鉛と黄色 · 続きを見る »

金属間化合物

金属間化合物(きんぞくかんかごうぶつ、intermetallic compound)は、2種類以上の金属によって構成される化合物。構成元素の原子比は整数である。成分元素と異なる特有の物理的・化学的性質を示す。構成元素が非金属である場合もあり、例として二ホウ化マグネシウム(MgB2, B: ホウ素は非金属)がある。MgB2 は2001年に転移温度 39 ケルビンの超伝導物質であることが分かり、一躍注目を浴びた。 金属間化合物の種類には、下記のようなものがある。.

バリウムと金属間化合物 · 金属間化合物と鉛 · 続きを見る »

電子捕獲

電子捕獲(でんしほかく、electron capture、EC)とは、原子核の放射性崩壊の一種である。電子捕獲では、電子軌道の電子が原子核に取り込まれ、捕獲された電子は原子核内の陽子と反応し中性子となり、同時に電子ニュートリノが放出される。捕獲される電子は普通はK軌道の電子であるが、L軌道やM軌道の電子が捕獲される場合もある。.

バリウムと電子捕獲 · 鉛と電子捕獲 · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

バリウムと電極 · 鉛と電極 · 続きを見る »

上記のリストは以下の質問に答えます

バリウムと鉛の間の比較

鉛が168を有しているバリウムは、171の関係を有しています。 彼らは一般的な28で持っているように、ジャカード指数は8.26%です = 28 / (171 + 168)。

参考文献

この記事では、バリウムと鉛との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »