ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

バリウムと元素

ショートカット: 違い類似点ジャカード類似性係数参考文献

バリウムと元素の違い

バリウム vs. 元素

バリウム(barium )は、原子番号 56 の元素。元素記号は Ba。アルカリ土類金属のひとつで、単体では銀白色の軟らかい金属。他のアルカリ土類金属元素と類似した性質を示すが、カルシウムやストロンチウムと比べ反応性は高い。化学的性質としては+2価の希土類イオンとも類似した性質を示す。アルカリ土類金属としては密度が大きく重いため、ギリシャ語で「重い」を意味する βαρύς (barys) にちなんで命名された。ただし、金属バリウムの比重は約3.5であるため軽金属に分類される。地殻における存在量は豊富であり、重晶石(硫酸バリウム)などの鉱石として産出する。確認埋蔵量の48.6%を中国が占めており、生産量も50%以上が中国によるものである。バリウムの最大の用途は油井やガス井を採掘するためのにおける加重剤であり、重晶石を砕いたバライト粉が利用される。 硫酸バリウム以外の可溶性バリウム塩には毒性があり、多量のバリウムを摂取するとカリウムチャネルをバリウムイオンが阻害することによって神経系への影響が生じる。そのためバリウムは毒物及び劇物取締法などにおいて規制の対象となっている。. 元素(げんそ、elementum、element)は、古代から中世においては、万物(物質)の根源をなす不可欠な究極的要素広辞苑 第五版 岩波書店を指しており、現代では、「原子」が《物質を構成する具体的要素》を指すのに対し「元素」は《性質を包括する抽象的概念》を示す用語となった。化学の分野では、化学物質を構成する基礎的な成分(要素)を指す概念を指し、これは特に「化学元素」と呼ばれる。 化学物質を構成する基礎的な要素と「万物の根源をなす究極的要素」としての元素とは異なるが、自然科学における元素に言及している文献では、混同や説明不足も見られる。.

バリウムと元素間の類似点

バリウムと元素は(ユニオンペディアに)共通で28ものを持っています: 原子番号半減期合金人工放射性元素亜鉛地殻マンガンランタンラジウムロベルト・ブンゼンヒ素テルルホウ素アルミニウムアルゴンアントワーヌ・ラヴォアジエカール・ヴィルヘルム・シェーレキセノンケイ素スズセシウム元素記号硫黄炭素水素放射能

原子番号

原子番号(げんしばんごう)とは、原子において、その原子核の中にある陽子の個数を表した番号である。電荷をもたない原子においては、原子中の電子の数に等しい。量記号はZで表すことがあるが、これはドイツ語のZahlの頭文字で数・番号という意味である。現在、元素の正式名称が決定している最大の原子番号は118である。.

バリウムと原子番号 · 元素と原子番号 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

バリウムと半減期 · 元素と半減期 · 続きを見る »

合金

合金(ごうきん、alloy)とは、単一の金属元素からなる純金属に対して、複数の金属元素あるいは金属元素と非金属元素から成る金属様のものをいう。純金属に他の元素を添加し組成を調節することで、機械的強度、融点、磁性、耐食性、自己潤滑性といった性質を変化させ材料としての性能を向上させた合金が生産されて様々な用途に利用されている。 一言に合金といっても様々な状態があり、完全に溶け込んでいる固溶体、結晶レベルでは成分の金属がそれぞれ独立している共晶、原子のレベルで一定割合で結合した金属間化合物などがある。合金の作製方法には、単純に数種類の金属を溶かして混ぜ合わせる方法や、原料金属の粉末を混合して融点以下で加熱する焼結法、化学的手法による合金めっき、ボールミル装置を使用して機械的に混合するメカニカルアロイングなどがある。ただし、全ての金属が任意の割合で合金となるわけではなく、合金を得られる組成の範囲については、物理的・化学的に制限(あるいは最適点)が存在する。.

バリウムと合金 · 元素と合金 · 続きを見る »

人工放射性元素

人工放射性元素(じんこうほうしゃせいげんそ, Synthetic element)は、人工的に合成された元素(同位体)の総称である。 天然には存在しない4つの元素(テクネチウム、プロメチウム、アスタチン、フランシウム)と、超ウラン元素(アメリシウム、キュリウムなど)はほぼすべて人工放射性元素であり、広義では人工の放射性同位体も含む。これらは半減期の短い放射性元素であるため、自然界には極めて僅かしか存在が確認されない。通常は、原子核に高いエネルギーを持たせた荷電粒子や、γ線、中性子などをぶつけて合成する。 人工の放射性同位体としては1934年にフレデリック・ジョリオ=キュリーとイレーヌ・ジョリオ=キュリーの夫妻が放射性リン (30P) を得たのが最初で、元素としては1937年に得られたテクネチウムが最初である。.

バリウムと人工放射性元素 · 人工放射性元素と元素 · 続きを見る »

亜鉛

亜鉛(あえん、zinc、zincum)は原子番号30の金属元素。元素記号は Zn。亜鉛族元素の一つ。安定な結晶構造は、六方最密充填構造 (HCP) の金属。必須ミネラル(無機質)16種の一つ。.

バリウムと亜鉛 · 亜鉛と元素 · 続きを見る »

地殻

1.

バリウムと地殻 · 元素と地殻 · 続きを見る »

マンガン

マンガン(manganese 、manganum)は原子番号25の元素。元素記号は Mn。日本語カタカナ表記での名称のマンガンは Mangan をカタカナに変換したもので、日本における漢字表記の当て字は満俺である。.

バリウムとマンガン · マンガンと元素 · 続きを見る »

ランタン

ランタン(Lanthan 、lanthanum )は、原子番号57の元素。元素記号は La。希土類元素の一つ。4f軌道を占有する電子は0個であるが、ランタノイド系列の最初の元素とされる。白色の金属で、常温、常圧で安定な結晶構造は、複六方最密充填構造(ABACスタッキング)。比重は6.17で、融点は918 、沸点は3420 。 空気中で表面が酸化され、高温では酸化ランタン(III) La2O3 となる。ハロゲン元素と反応し、水にはゆっくりと溶ける。酸には易溶。安定な原子価は+3価。 モナズ石(モナザイト)に含まれる。.

バリウムとランタン · ランタンと元素 · 続きを見る »

ラジウム

ラジウム(radium)は、原子番号88の元素。元素記号は Ra。アルカリ土類金属の一つ。安定同位体は存在しない。天然には4種類の同位体が存在する。白色の金属で、比重はおよそ5-6、融点は700 、沸点は1140 。常温、常圧での安定な結晶構造は体心立方構造 (BCC)。反応性は強く、水と激しく反応し、酸に易溶。空気中で簡単に酸化され暗所で青白く光る。原子価は2価。化学的性質などはバリウムに似る。炎色反応は洋紅色。 ラジウムがアルファ崩壊してラドンになる。ラジウムの持つ放射能を元にキュリー(記号 Ci)という単位が定義され、かつては放射能の単位として用いられていた。現在、放射能の単位はベクレル(記号 Bq)を使用することになっており、1 Ciは3.7 × 1010 Bqに相当する。なお、ラジウム224、226、228は WHO の下部機関 IARC より発癌性があると (Type1) 勧告されている。 ラジウムそのものの崩壊ではアルファ線しか放出されないが、その後の娘核種の崩壊でベータ線やガンマ線なども放出される。.

バリウムとラジウム · ラジウムと元素 · 続きを見る »

ロベルト・ブンゼン

ベルト・ヴィルヘルム・ブンゼン(Robert Wilhelm Bunsen、1811年3月31日(30日とも) – 1899年8月16日)は、ドイツの化学者である。自らが改良したバーナー(ブンゼンバーナーと呼ばれる)を利用して、グスタフ・キルヒホフと共に、分光学的方法で1860年にセシウム、1861年にルビジウムを発見した。.

バリウムとロベルト・ブンゼン · ロベルト・ブンゼンと元素 · 続きを見る »

ヒ素

ヒ素(砒素、ヒそ、arsenic、arsenicum)は、原子番号33の元素。元素記号は As。第15族元素(窒素族元素)の一つ。 最も安定で金属光沢があるため金属ヒ素とも呼ばれる「灰色ヒ素」、ニンニク臭があり透明なロウ状の柔らかい「黄色ヒ素」、黒リンと同じ構造を持つ「黒色ヒ素」の3つの同素体が存在する。灰色ヒ素は1気圧下において615 で昇華する。 ファンデルワールス半径や電気陰性度等さまざまな点でリンに似た物理化学的性質を示し、それが生物への毒性の由来になっている。.

バリウムとヒ素 · ヒ素と元素 · 続きを見る »

テルル

テルル(tellurium)は原子番号52の元素。元素記号は Te。第16族元素の一つ。.

テルルとバリウム · テルルと元素 · 続きを見る »

ホウ素

ホウ素(ホウそ、硼素、boron、borium)は、原子番号 5、原子量 10.81、元素記号 B で表される元素である。高融点かつ高沸点な硬くて脆い固体であり、金属元素と非金属元素の中間の性質を示す(半金属)。1808年にゲイ.

バリウムとホウ素 · ホウ素と元素 · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

アルミニウムとバリウム · アルミニウムと元素 · 続きを見る »

アルゴン

アルゴン(argon)は原子番号 18 の元素で、元素記号は Ar である。原子量は 39.95。周期表において第18族元素(希ガス)かつ第3周期元素に属す。.

アルゴンとバリウム · アルゴンと元素 · 続きを見る »

アントワーヌ・ラヴォアジエ

Marie-Anne Pierrette Paulzeの肖像画 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 『化学要論』(名古屋市科学館展示、金沢工業大学所蔵 マリー=アンヌが描いた実験図。A側の方を熱してAは水銀、Eは空気である 呼吸と燃焼の実験 ダイヤモンドの燃焼実験 宇田川榕菴により描かれた『舎密開宗』。蘭学として伝わったラヴォアジエの水素燃焼実験図 Jacques-Léonard Mailletによって作られたラヴォアジエ(ルーヴル宮殿) アントワーヌ・ラヴォアジエ Éleuthère Irénée du Pont de Nemoursとラヴォアジエ アントワーヌ=ローラン・ド・ラヴォアジエ(ラボアジェなどとも、フランス語:Antoine-Laurent de Lavoisier, 、1743年8月26日 - 1794年5月8日)は、フランス王国パリ出身の化学者、貴族。質量保存の法則を発見、酸素の命名、フロギストン説を打破したことから「近代化学の父」と称される - コトバンク、2013年3月27日閲覧。。 1774年に体積と重量を精密にはかる定量実験を行い、化学反応の前後では質量が変化しないという質量保存の法則を発見。また、ドイツの化学者、医師のゲオルク・シュタールが提唱し当時支配的であった、「燃焼は一種の分解現象でありフロギストンが飛び出すことで熱や炎が発生するとする説(フロギストン説)」を退け、1774年に燃焼を「酸素との結合」として説明した最初の人物で、1779年に酸素を「オキシジェーヌ(oxygène)」と命名した。ただし、これは酸と酸素とを混同したための命名であった。 しばしば「酸素の発見者」と言及されるが、酸素自体の最初の発見者は、イギリスの医者ジョン・メーヨーが血液中より酸素を発見していたが、当時は受け入れられず、その後1775年3月にイギリスの自然哲学者、教育者、神学者のジョゼフ・プリーストリーが再び発見し、プリーストリーに優先権があるため、厳密な表現ではない; 。進展中だった科学革命の中でプリーストリーの他にスウェーデンの化学者、薬学者のカール・ヴィルヘルム・シェーレが個別に酸素を発見しているため、正確に特定することは困難だが、結果としてラヴォアジエが最初に酸素を「酸素(oxygène)」と命名したことに変わりはない。またアメリカの科学史家の トーマス・クーンは『科学革命の構造』の中でパラダイムシフトの概念で説明しようとした。。なお、プリーストリーは酸素の発見論文を1775年に王立協会に提出しているため、化学史的に酸素の発見者とされる人物はプリーストリーである。 また、化学的には誤りではあったが物体の温度変化を「カロリック」によって引き起こされるものだとし、これを体系づけてカロリック説を提唱した。.

アントワーヌ・ラヴォアジエとバリウム · アントワーヌ・ラヴォアジエと元素 · 続きを見る »

カール・ヴィルヘルム・シェーレ

180px カール・ヴィルヘルム・シェーレ(Karl (または Carl) Wilhelm Scheele、1742年12月9日 - 1786年5月21日)はスウェーデンの化学者・薬学者。酸素をジョゼフ・プリーストリーとは別に発見したことで有名である。金属を中心とする多数の元素や有機酸(酒石酸、シュウ酸、尿酸、乳酸、クエン酸)・無機酸(フッ化水素酸、青酸、ヒ酸)を発見している。現在の低温殺菌法に似た技法も開発していた。 当時スウェーデン領であったポメラニア地方のシュトラールズントに生まれた。14歳で薬剤師の徒弟として働き始め、その後も薬剤師としてストックホルム、ウプサラ、ケーピンなどで働いた。当時の薬剤師は薬品の精製のために化学実験の装置をもっていたため、シェーレも化学に精通していた。多くの大学からの招聘にもかかわらず学者にはならず、ケーピンで没した。シェーレが若死にしたのは同時代の化学者の例に漏れず、危険な実験条件のもとで研究を進めたためだと考えられている。また彼には物質を舐める癖があったため、毒性のある物質の毒にあたったのではともされる。.

カール・ヴィルヘルム・シェーレとバリウム · カール・ヴィルヘルム・シェーレと元素 · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

キセノンとバリウム · キセノンと元素 · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

ケイ素とバリウム · ケイ素と元素 · 続きを見る »

スズ

(錫、Tin、Zinn)とは、典型元素の中の炭素族元素に分類される金属で、原子番号50の元素である。元素記号は Sn。.

スズとバリウム · スズと元素 · 続きを見る »

セシウム

ウム (caesium, caesium, cesium) は原子番号55の元素。元素記号は、「灰青色の」を意味するラテン語の caesius カエシウスより Cs。軟らかく黄色がかった銀色をしたアルカリ金属である。融点は28 で、常温付近で液体状態をとる五つの金属元素のうちの一つである。 セシウムの化学的・物理的性質は同じくアルカリ金属のルビジウムやカリウムと似ていて、水と−116 で反応するほど反応性に富み、自然発火する。安定同位体を持つ元素の中で、最小の電気陰性度を持つ。セシウムの安定同位体はセシウム133のみである。セシウム資源となる代表的な鉱物はポルックス石である。 ウランの代表的な核分裂生成物として、ストロンチウム90と共にセシウム135、セシウム137が、また原子炉内の反応によってセシウム134が生成される。この中でセシウム137は比較的多量に発生しベータ線を出し半減期も約30年と長く、放射性セシウム(放射性同位体)として、核兵器の使用(実験)による死の灰(黒い雨)や原発事故時の「放射能の雨」などの放射性降下物として環境中の存在や残留が問題となる。 2人のドイツ人化学者、ロベルト・ブンゼンとグスタフ・キルヒホフは、1860年に当時の新技術であるを用いて鉱泉からセシウムを発見した。初めての応用先は真空管や光電素子のであった。1967年、セシウム133の発光スペクトルの比振動数が国際単位系の秒の定義に選ばれた。それ以来、セシウムは原子時計として広く使われている。 1990年代以降のセシウムの最大の応用先は、ギ酸セシウムを使ったである。エレクトロニクスや化学の分野でもさまざまな形で応用されている。放射性同位体であるセシウム137は約30年の半減期を持ち、医療技術、工業用計量器、水文学などに応用されている。.

セシウムとバリウム · セシウムと元素 · 続きを見る »

元素記号

在の元素記号(硫黄) ドルトンの元素記号(硫黄) 元素記号(げんそきごう)とは、元素、あるいは原子を表記するために用いられる記号のことであり、原子記号(げんしきごう)とも呼ばれる。現在は、1、2、ないし3文字のアルファベットが用いられる。 なお、現在正式な元素記号が決定している最大の元素は原子番号118のOg(オガネソン)である。 分子の組成をあらわす化学式や、分子の変化を記述する化学反応式などで利用される。 現在使用されている元素記号は1814年にベルセリウスが考案したものに基づいており、ラテン語などから1文字または2文字をとってつくられている。 全ての元素記号がラテン語名と一致しているが、ギリシア語、英語、ドイツ語(その他スペイン語やスウェーデンの地名からの採用もある)などからの採用も多く、ラテン語名との一致は偶然または語源を通した間接的なものである。元素名が確定されていない超ウラン元素については、3文字の系統名が用いられる。 物質の構成要素を記号であらわすことはかつての錬金術においてもおこなわれていた。 化学者ジョン・ドルトンも独自の記号を開発して化学反応を記述していたが、現在はアルファベットでの表記が国際的に使われている。 原子番号16番で質量数35の放射性硫黄原子1つと酸素原子4つからなる2価の陰イオンの硫酸イオンのイオン式。 原子番号や質量数を付記する場合、原子番号は左下に (13Al)、質量数は左上に (27Al)、イオン価は右肩に (Al3+)、原子数は右下に (N2) 付記する。.

バリウムと元素記号 · 元素と元素記号 · 続きを見る »

硫黄

硫黄(いおう、sulfur, sulphur)は原子番号 16、原子量 32.1 の元素である。元素記号は S。酸素族元素の一つ。多くの同素体や結晶多形が存在し、融点、密度はそれぞれ異なる。沸点 444.674 ℃。大昔から自然界において存在が知られており、発見者は不明になっている。硫黄の英名 sulfur は、ラテン語で「燃える石」を意味する言葉に語源を持っている。.

バリウムと硫黄 · 元素と硫黄 · 続きを見る »

炭素

炭素(たんそ、、carbon)は、原子番号 6、原子量 12.01 の元素で、元素記号は C である。 非金属元素であり、周期表では第14族元素(炭素族元素)および第2周期元素に属する。単体・化合物両方において極めて多様な形状をとることができる。 炭素-炭素結合で有機物の基本骨格をつくり、全ての生物の構成材料となる。人体の乾燥重量の2/3は炭素である​​。これは蛋白質、脂質、炭水化物に含まれる原子の過半数が炭素であることによる。光合成や呼吸など生命活動全般で重要な役割を担う。また、石油・石炭・天然ガスなどのエネルギー・原料として、あるいは二酸化炭素やメタンによる地球温暖化問題など、人間の活動と密接に関わる元素である。 英語の carbon は、1787年にフランスの化学者ギトン・ド・モルボーが「木炭」を指すラテン語 carbo から名づけたフランス語の carbone が転じた。ドイツ語の Kohlenstoff も「炭の物質」を意味する。日本語の「炭素」という語は宇田川榕菴が著作『舎密開宗』にて用いたのがはじめとされる。.

バリウムと炭素 · 元素と炭素 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

バリウムと鉄 · 元素と鉄 · 続きを見る »

鉛(なまり、lead、plumbum、Blei)とは、典型元素の中の金属元素に分類される、原子番号が82番の元素である。なお、元素記号は Pb である。.

バリウムと鉛 · 元素と鉛 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

バリウムと水素 · 元素と水素 · 続きを見る »

放射能

放射能(ほうしゃのう、radioactivity、activity)とは、放射性同位元素が放射性崩壊を起こして別の元素に変化する性質(能力)を言う。なお、放射性崩壊に際しては放射線の放出を伴う。 放射能は、単位時間に放射性崩壊する原子の個数(単位:ベクレル )で計量される。 なお、ある元素の同位体の中で放射能を持つ元素を表す場合は「放射性同位体」、それらを含む物質を表す場合は「放射性物質」と呼ぶのが適切である。.

バリウムと放射能 · 元素と放射能 · 続きを見る »

上記のリストは以下の質問に答えます

バリウムと元素の間の比較

元素が322を有しているバリウムは、171の関係を有しています。 彼らは一般的な28で持っているように、ジャカード指数は5.68%です = 28 / (171 + 322)。

参考文献

この記事では、バリウムと元素との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »