ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ジェットエンジンと熱機関の理論サイクル

ショートカット: 違い類似点ジャカード類似性係数参考文献

ジェットエンジンと熱機関の理論サイクルの違い

ジェットエンジン vs. 熱機関の理論サイクル

ェットエンジン(jet engine)とは、外部から空気を取り入れて噴流(ジェット)を生成し、その反作用を推進に利用する熱機関である。ジェットの生成エネルギーには、取り込んだ空気に含まれる酸素と燃料との化学反応(燃焼)の熱エネルギーが利用される。狭義には、空気吸い込み型の噴流エンジンだけを指す。また、主に航空機(固定翼機、回転翼機)やミサイルの推進機関または動力源として使用される。 ジェット推進は、噴流の反作用により推進力を得る。具体的には、噴流が生み出す運動量変化による反作用(反動)がダクトノズルやプラグノズルに伝わり、推進力が生成される。なお、ジェット推進と同様の噴流が最終的に生成されるものであっても、熱力学的に噴流を生成していないもの、例えばプロペラやファン推力などは、通常はジェット推進には含めない。プロペラやファンは、直接的には回転翼による揚力を推力としている。 ジェット推進を利用している熱機関であっても、ジェット推進を利用しているエンジン全てがジェットエンジンと認識されているわけではなく、外部から取り込んだ空気を利用しないもの(典型的には、ロケットエンジン)は、通俗的にはジェットエンジンに含められていない。ジェットエンジンとロケットエンジンは、用途とメカニズムが異なる。具体的には、ジェットエンジンは、推進のためのジェット噴流を生成するために外部から空気を取り入れる必要があるのに対し、ロケットエンジンは酸化剤を搭載して噴出ガスの反動で進むため、宇宙空間でも使用可能である点が強調される。その代わりにロケットエンジンの燃焼器より前に噴流は全くない。そのため吸気側の噴流も推進力に利用するジェットエンジンと比較して構造も大気中の効率も大幅に異なり、区別して扱われる。 現代の実用ジェットエンジンのほとんどは噴流の持続的な生成にガスタービン原動機を使っている。タービンとはラテン語の「回転するもの」という語源から来た連続回転機のことである。このため、連続的にガスジェットを生成できることが好都合であるが、実際にはタービンを使わないジェットエンジンも多数あり、タービンの有無はジェットエンジンであるか否かの本質とは関係ない。ただしガスタービン原動機を使うことで、回転翼推力とジェット推力の複合出力エンジンとして様々な最適化が可能になり、複数の形式が生まれた。 さらに、ジェットエンジンは熱機関の分類(すなわち「内燃機関」か「外燃機関」か)からも独立した概念である。つまり、ジェットエンジンは基本的には内燃機関であるが、実用化されていないものの、原子力ジェットエンジンのような純粋な外燃機関のジェットエンジンも存在しうる。. 熱機関の理論サイクル(ねつきかんのりろんサイクル)は、 熱機関の作業物質が行うサイクル(一巡して元に戻る状態変化)を 単純化・理想化したサイクルのことであり、 一部を除いて可逆サイクルである。 実際の熱機関のサイクルは多少なりとも不可逆変化を伴っており、 ここで扱う理論サイクルとは異なっているが、 理論サイクルは熱機関の原理的理解や基本設計には必要なものである。熱サイクルともいう。 熱機関と逆の動作をする冷凍機のサイクルは、 熱機関のサイクルを逆に動作させたものと考えることができ、 ここでは、冷凍機の理論サイクルも含めて扱う。.

ジェットエンジンと熱機関の理論サイクル間の類似点

ジェットエンジンと熱機関の理論サイクルは(ユニオンペディアに)共通で6ものを持っています: ブレイトンサイクルガスタービンエンジン内燃機関熱力学熱機関熱機関の理論サイクル

ブレイトンサイクル

ブレイトンサイクル(Brayton cycle)は、断熱圧縮、等圧加熱、断熱膨張、等圧冷却から構成される熱力学的サイクルであり、ジュールサイクルとも呼ばれる。 当初は、ピストン・シリンダ方式のガス機関のサイクルとして実現されたが、現在では、等圧燃焼ガスタービン機関の理論サイクルとして用いられている。.

ジェットエンジンとブレイトンサイクル · ブレイトンサイクルと熱機関の理論サイクル · 続きを見る »

ガスタービンエンジン

タービンエンジンは、原動機の一種であり、燃料の燃焼等で生成された高温のガスでタービンを回して回転運動エネルギーを得る内燃機関である。重量や体積の割に高出力が得られることから、現在ではヘリコプターを含むほとんどの航空機に動力源として用いられている。また、始動時間が短く冷却水が不要なことから非常用発電設備として、さらに1990年代から大規模火力発電所においてガスタービン・蒸気タービンの高効率複合サイクル発電(コンバインドサイクル発電)として用いられている。.

ガスタービンエンジンとジェットエンジン · ガスタービンエンジンと熱機関の理論サイクル · 続きを見る »

内燃機関

4ストロークエンジン) (1)吸入 (2)圧縮 (3)燃焼・膨張 (4)排気 内燃機関(ないねんきかん)とは、燃料をシリンダー内で燃焼させ、燃焼ガスを直接作動流体として用いて、その熱エネルギーによって仕事をする原動機 特許庁。これに対して、燃焼ガスと作動流体が異なる原動機を外燃機関という。 インターナル・コンバッション・エンジン() の訳語であり、内部(インターナル)で燃料を燃焼(コンバッション)させて動力を取り出す機関(エンジン)である。「機関」も「エンジン」も、複雑な機構を持つ装置という意味を持つが、ここでは発動機という意味である。.

ジェットエンジンと内燃機関 · 内燃機関と熱機関の理論サイクル · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

ジェットエンジンと熱力学 · 熱力学と熱機関の理論サイクル · 続きを見る »

熱機関

熱機関(ねつきかん、英語:heat engine)とは、熱をエネルギー源とした機関である。装置外から熱を取り込むものと、装置内で(通常は燃料の燃焼によって)生成した熱エネルギーを使用するものとがある。.

ジェットエンジンと熱機関 · 熱機関と熱機関の理論サイクル · 続きを見る »

熱機関の理論サイクル

熱機関の理論サイクル(ねつきかんのりろんサイクル)は、 熱機関の作業物質が行うサイクル(一巡して元に戻る状態変化)を 単純化・理想化したサイクルのことであり、 一部を除いて可逆サイクルである。 実際の熱機関のサイクルは多少なりとも不可逆変化を伴っており、 ここで扱う理論サイクルとは異なっているが、 理論サイクルは熱機関の原理的理解や基本設計には必要なものである。熱サイクルともいう。 熱機関と逆の動作をする冷凍機のサイクルは、 熱機関のサイクルを逆に動作させたものと考えることができ、 ここでは、冷凍機の理論サイクルも含めて扱う。.

ジェットエンジンと熱機関の理論サイクル · 熱機関の理論サイクルと熱機関の理論サイクル · 続きを見る »

上記のリストは以下の質問に答えます

ジェットエンジンと熱機関の理論サイクルの間の比較

熱機関の理論サイクルが44を有しているジェットエンジンは、284の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は1.83%です = 6 / (284 + 44)。

参考文献

この記事では、ジェットエンジンと熱機関の理論サイクルとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »