ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ジェットエンジンと内燃機関

ショートカット: 違い類似点ジャカード類似性係数参考文献

ジェットエンジンと内燃機関の違い

ジェットエンジン vs. 内燃機関

ェットエンジン(jet engine)とは、外部から空気を取り入れて噴流(ジェット)を生成し、その反作用を推進に利用する熱機関である。ジェットの生成エネルギーには、取り込んだ空気に含まれる酸素と燃料との化学反応(燃焼)の熱エネルギーが利用される。狭義には、空気吸い込み型の噴流エンジンだけを指す。また、主に航空機(固定翼機、回転翼機)やミサイルの推進機関または動力源として使用される。 ジェット推進は、噴流の反作用により推進力を得る。具体的には、噴流が生み出す運動量変化による反作用(反動)がダクトノズルやプラグノズルに伝わり、推進力が生成される。なお、ジェット推進と同様の噴流が最終的に生成されるものであっても、熱力学的に噴流を生成していないもの、例えばプロペラやファン推力などは、通常はジェット推進には含めない。プロペラやファンは、直接的には回転翼による揚力を推力としている。 ジェット推進を利用している熱機関であっても、ジェット推進を利用しているエンジン全てがジェットエンジンと認識されているわけではなく、外部から取り込んだ空気を利用しないもの(典型的には、ロケットエンジン)は、通俗的にはジェットエンジンに含められていない。ジェットエンジンとロケットエンジンは、用途とメカニズムが異なる。具体的には、ジェットエンジンは、推進のためのジェット噴流を生成するために外部から空気を取り入れる必要があるのに対し、ロケットエンジンは酸化剤を搭載して噴出ガスの反動で進むため、宇宙空間でも使用可能である点が強調される。その代わりにロケットエンジンの燃焼器より前に噴流は全くない。そのため吸気側の噴流も推進力に利用するジェットエンジンと比較して構造も大気中の効率も大幅に異なり、区別して扱われる。 現代の実用ジェットエンジンのほとんどは噴流の持続的な生成にガスタービン原動機を使っている。タービンとはラテン語の「回転するもの」という語源から来た連続回転機のことである。このため、連続的にガスジェットを生成できることが好都合であるが、実際にはタービンを使わないジェットエンジンも多数あり、タービンの有無はジェットエンジンであるか否かの本質とは関係ない。ただしガスタービン原動機を使うことで、回転翼推力とジェット推力の複合出力エンジンとして様々な最適化が可能になり、複数の形式が生まれた。 さらに、ジェットエンジンは熱機関の分類(すなわち「内燃機関」か「外燃機関」か)からも独立した概念である。つまり、ジェットエンジンは基本的には内燃機関であるが、実用化されていないものの、原子力ジェットエンジンのような純粋な外燃機関のジェットエンジンも存在しうる。. 4ストロークエンジン) (1)吸入 (2)圧縮 (3)燃焼・膨張 (4)排気 内燃機関(ないねんきかん)とは、燃料をシリンダー内で燃焼させ、燃焼ガスを直接作動流体として用いて、その熱エネルギーによって仕事をする原動機 特許庁。これに対して、燃焼ガスと作動流体が異なる原動機を外燃機関という。 インターナル・コンバッション・エンジン() の訳語であり、内部(インターナル)で燃料を燃焼(コンバッション)させて動力を取り出す機関(エンジン)である。「機関」も「エンジン」も、複雑な機構を持つ装置という意味を持つが、ここでは発動機という意味である。.

ジェットエンジンと内燃機関間の類似点

ジェットエンジンと内燃機関は(ユニオンペディアに)共通で38ものを持っています: ハインケルハインケル HeS 1ハインケル HeS 3モータージェットラバール・ノズルラムジェットエンジンレシプロエンジンロケットロケットエンジンプロップファンパルスジェットデトネーションフランク・ホイットルフランスドイツアンリ・コアンダガスタービンエンジンギヤードターボファンエンジンコアンダ=1910ターボプロップエンジンターボファンエンジンターボシャフトエンジンターボジェットエンジン熱力学熱機関熱機関の理論サイクル燃焼燃焼室燃焼ガス燃料...遠心式圧縮機運動エネルギー馬力軸流式圧縮機航空用エンジン酸素He 178 (航空機)水素 インデックスを展開 (8 もっと) »

ハインケル

ハインケルとはエルンスト・ハインケル(Ernst Heinkel)博士によって設立されたハインケル航空機製造会社(Heinkel Flugzeugwerke)を指す。ヴェルサイユ条約による航空機製造禁止が緩和された1922年にドイツ北部のロストック近郊のヴァーネミュンデ (Warnemünde) に設立された。第二次世界大戦中にドイツ空軍のために爆撃機を始め数多くの航空機を製造した。.

ジェットエンジンとハインケル · ハインケルと内燃機関 · 続きを見る »

ハインケル HeS 1

ハインケル HeS 1(Heinkel Strahltriebwerk 1 、HeS 1)は、最初期の遠心式ターボジェットエンジン。理論実証試験のみに用いられた。.

ジェットエンジンとハインケル HeS 1 · ハインケル HeS 1と内燃機関 · 続きを見る »

ハインケル HeS 3

ハインケル HeS 3 (Heinkel Strahltriebwerk 3, HeS 3)は、単体飛行を成し遂げた世界初のターボジェットエンジン。.

ジェットエンジンとハインケル HeS 3 · ハインケル HeS 3と内燃機関 · 続きを見る »

モータージェット

モータージェット (motorjet) とは、ジェット噴射以外の動力(多くはレシプロエンジン)を利用して圧縮機を駆動するタイプの原初的なジェットエンジン。サーモジェット (thermojet) とも呼ばれたが、この名称は一般的にパルスジェットの一種を指すことが多い。第二次世界大戦以前に航空機用エンジンとして注目されたものの、ターボジェットエンジンや他のタイプのジェットエンジンが実用化されるとその効率の悪さから衰退していった。.

ジェットエンジンとモータージェット · モータージェットと内燃機関 · 続きを見る »

ラバール・ノズル

ラバール・ノズルの断面図とグラフ。流速 (v)、温度 (t)、圧力 (p) ラバール・ノズルまたはドラバル・ノズル(De Laval nozzle)は、中ほどが狭まっている管で、砂時計のような形状のノズル。収縮拡大ノズル、CDノズルとも。ガス流をこれに通すことで加速させ、超音速を得るのに使われる。ある種の蒸気タービン(衝動タービン)に広く使われ、ロケットエンジンや超音速ジェットエンジンにも使われている。 同様の流れの特性は、天体物理学における宇宙ジェットにも適用される。.

ジェットエンジンとラバール・ノズル · ラバール・ノズルと内燃機関 · 続きを見る »

ラムジェットエンジン

ラムジェットエンジンの構造 ラムジェットエンジン(Ramjet engine)は、ジェットエンジンの一種であり、一般には吸入した空気をラム圧(ram)により圧縮し、そこに燃料を噴射して燃焼させた排気の反動で推進力を得る。その構造より、英語ではストーブパイプエンジンとも呼ばれる。ターボジェットエンジンより構造が簡易・軽量になる利点がある。.

ジェットエンジンとラムジェットエンジン · ラムジェットエンジンと内燃機関 · 続きを見る »

レシプロエンジン

レシプロエンジン(英語:reciprocating engine)は、往復動機関あるいはピストンエンジン・ピストン機関とも呼ばれる熱機関の一形式である。 燃料の燃焼による熱エネルギーを作動流体の圧力(膨張力)としてまず往復運動に変換し、ついで回転運動の力学的エネルギーとして取り出す原動機である。燃焼エネルギーをそのまま回転運動として取り出すタービンエンジンやロータリーエンジンと対置される概念でもある。 レシプロエンジンは、自動車や船舶、20世紀前半までの航空機、非電化の鉄道で用いられる鉄道車両、といった乗り物の動力源としては最も一般的なもので、他に発電機やポンプなどの定置動力にも用いられる。.

ジェットエンジンとレシプロエンジン · レシプロエンジンと内燃機関 · 続きを見る »

ロケット

ット(rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル(打ち上げ機)全体をロケットということも多い。 また、ロケットの先端部に核弾頭や爆発物などの軍事用のペイロードを搭載して標的や目的地に着弾させる場合にはミサイルとして区別され、弾道飛行をして目的地に着弾させるものを特に弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは国際社会から事実上の弾道ミサイル発射実験と見なされており国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては人工衛星打ち上げであってもロケットではなくミサイルと報道されている。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、1379年にイタリアの芸術家兼技術者であるムラトーリが西欧で初めて火薬推進式のロケットを作り、それを形状にちなんで『ロッケッタ』と名づけたことによる。.

ジェットエンジンとロケット · ロケットと内燃機関 · 続きを見る »

ロケットエンジン

ットエンジンとは推進剤を噴射する事によってその反動で推力を得るエンジンである。ニュートンの第3法則に基づく。 同義語としてロケットモータがある。こちらは固体燃料ロケットエンジンの場合に用いられるのが一般的である。.

ジェットエンジンとロケットエンジン · ロケットエンジンと内燃機関 · 続きを見る »

プロップファン

プロップファンエンジン(propfan engine)、またはオープンローターエンジン(open rotor engine)は、ターボプロップエンジンを発展させた飛行機用エンジンであり、一般にはタービンと同軸線上に後退角の付いた二重反転プロペラを配置したものを指す。 ターボファンエンジンと同等の高い飛行速度でターボプロップ並の低い燃料消費率を得ることを目的に設計されている。.

ジェットエンジンとプロップファン · プロップファンと内燃機関 · 続きを見る »

パルスジェット

パルスジェット(pulse jet) は、間欠燃焼型のジェットエンジンである。単純な構造のため、簡素で効率の良い熱供給源として給湯器などに応用されている。かつてはミサイルや航空機の推進装置として実用化されたこともあった。 構造が単純で市販レベルの材料でも制作できるため、ホビーとして個人で制作する者もいる。.

ジェットエンジンとパルスジェット · パルスジェットと内燃機関 · 続きを見る »

デトネーション

デトネーション(detonation)は爆轟のことであるが、内燃レシプロ機関の(圧縮後期および)燃焼and・or膨張の段階において発生する異常燃焼現象が以前は詳細に解っておらず総称されたりもしていたという歴史的事情から、専門的な論文等以外ではこんにちでも総称的に(あるいは混同して)この語が使われることがあり、この記事でも異常燃焼一般について扱う。.

ジェットエンジンとデトネーション · デトネーションと内燃機関 · 続きを見る »

フランク・ホイットル

フランク・ホイットル (Frank Whittle、1907年6月1日 - 1996年8月9日)はイギリスの空軍士官、技術者。発音はホイットルよりもウィットルの方が近い。 ターボジェットエンジンの先覚者の1人である。.

ジェットエンジンとフランク・ホイットル · フランク・ホイットルと内燃機関 · 続きを見る »

フランス

フランス共和国(フランスきょうわこく、République française)、通称フランス(France)は、西ヨーロッパの領土並びに複数の海外地域および領土から成る単一主権国家である。フランス・メトロポリテーヌ(本土)は地中海からイギリス海峡および北海へ、ライン川から大西洋へと広がる。 2、人口は6,6600000人である。-->.

ジェットエンジンとフランス · フランスと内燃機関 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

ジェットエンジンとドイツ · ドイツと内燃機関 · 続きを見る »

アンリ・コアンダ

アンリ・コアンダ アンリ・マリ・コアンダ(Henri Marie Coandă、IPA: 、1886年6月7日 - 1972年11月25日)はルーマニアの発明家、航空力学の先駆者にして世界初のジェット機コアンダ.

アンリ・コアンダとジェットエンジン · アンリ・コアンダと内燃機関 · 続きを見る »

ガスタービンエンジン

タービンエンジンは、原動機の一種であり、燃料の燃焼等で生成された高温のガスでタービンを回して回転運動エネルギーを得る内燃機関である。重量や体積の割に高出力が得られることから、現在ではヘリコプターを含むほとんどの航空機に動力源として用いられている。また、始動時間が短く冷却水が不要なことから非常用発電設備として、さらに1990年代から大規模火力発電所においてガスタービン・蒸気タービンの高効率複合サイクル発電(コンバインドサイクル発電)として用いられている。.

ガスタービンエンジンとジェットエンジン · ガスタービンエンジンと内燃機関 · 続きを見る »

ギヤードターボファンエンジン

ヤードターボファンエンジン1.ファン2.減速機構(遊星ギヤ) ギヤードターボファンエンジン(Geared Turbo Fan Engine、 GTF)とは、ジェットエンジンの一種。従来のターボファンエンジンの発展形であり、従来と異なるのは、ファンを減速して駆動するために遊星歯車機構を採用する点である。 ファンと低圧圧縮機の間に減速ギアボックスを挿入したスタイルを持つギヤードターボファンの構造は、本質的にはターボプロップエンジンのプロペラをタービンと同軸のダクテッドファンとしたものである。そのため、ターボファンエンジンとターボプロップエンジンの折衷、あるいは両者の中間的な性質を持つ形式であるといえる。.

ギヤードターボファンエンジンとジェットエンジン · ギヤードターボファンエンジンと内燃機関 · 続きを見る »

コアンダ=1910

アンダ.

コアンダ=1910とジェットエンジン · コアンダ=1910と内燃機関 · 続きを見る »

ターボプロップエンジン

ターボプロップエンジン(Turboprop Engine)とはガスタービンエンジンの1形態で、そのエネルギー出力の大部分をプロペラを回転させる力として取り出す機構を備えたエンジンである。ターボプロップエンジンは主に小型、あるいは低亜音速の航空機用動力として利用されるが、中には最大速度が500ノット (925 km/h) に達するような高速機においても適用例がある。.

ジェットエンジンとターボプロップエンジン · ターボプロップエンジンと内燃機関 · 続きを見る »

ターボファンエンジン

ターボファンエンジン(Turbofan engine)は、ジェットエンジンの一種。コアとなるターボジェットエンジンにファンを追加したものである。ファンを用いることにより、ターボジェットと異なり、コアエンジン部を迂回したエアフローが設定されている。このエアフローにより、ジェットエンジン推力の増大および効率化が行われる。1960年代より実用化が行われ、現代のジェットエンジンの主流となっているものである。.

ジェットエンジンとターボファンエンジン · ターボファンエンジンと内燃機関 · 続きを見る »

ターボシャフトエンジン

ターボシャフトエンジン(Turboshaft engine)はジェットエンジン/ガスタービンエンジンの一種。ジェットエンジンが排気の噴出力を推進力として利用するのに対し、タービン排気より軸出力を取り出し、それを用いる方式である。戦車や船舶用ガスタービンなども軸出力を用いている点では同等であるが、航空機用エンジンとして用いられている場合、ターボシャフトエンジンと呼ばれる。特にヘリコプター向けとして用いられている。.

ジェットエンジンとターボシャフトエンジン · ターボシャフトエンジンと内燃機関 · 続きを見る »

ターボジェットエンジン

ターボジェットエンジン(Turbojet engine)はジェットエンジンの一種。ターボファンエンジンやターボプロップエンジンに対し、レトロニムとしてピュアジェットエンジンとも言われる。.

ジェットエンジンとターボジェットエンジン · ターボジェットエンジンと内燃機関 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

ジェットエンジンと熱力学 · 内燃機関と熱力学 · 続きを見る »

熱機関

熱機関(ねつきかん、英語:heat engine)とは、熱をエネルギー源とした機関である。装置外から熱を取り込むものと、装置内で(通常は燃料の燃焼によって)生成した熱エネルギーを使用するものとがある。.

ジェットエンジンと熱機関 · 内燃機関と熱機関 · 続きを見る »

熱機関の理論サイクル

熱機関の理論サイクル(ねつきかんのりろんサイクル)は、 熱機関の作業物質が行うサイクル(一巡して元に戻る状態変化)を 単純化・理想化したサイクルのことであり、 一部を除いて可逆サイクルである。 実際の熱機関のサイクルは多少なりとも不可逆変化を伴っており、 ここで扱う理論サイクルとは異なっているが、 理論サイクルは熱機関の原理的理解や基本設計には必要なものである。熱サイクルともいう。 熱機関と逆の動作をする冷凍機のサイクルは、 熱機関のサイクルを逆に動作させたものと考えることができ、 ここでは、冷凍機の理論サイクルも含めて扱う。.

ジェットエンジンと熱機関の理論サイクル · 内燃機関と熱機関の理論サイクル · 続きを見る »

燃焼

燃焼(ねんしょう)とは、可燃物(有機化合物やある種の元素など)が空気中または酸素中で光や熱の発生を伴いながら、比較的激しく酸素と反応する酸化反応のことである(ろうそくの燃焼、木炭の燃焼、マグネシウムの燃焼など)。 また、火薬類のように酸化剤(硝酸塩、過塩素酸塩など)から酸素が供給される場合は、空気が無くても燃焼は起こる。 広義には次のような反応も燃焼と呼ぶことがある。.

ジェットエンジンと燃焼 · 内燃機関と燃焼 · 続きを見る »

燃焼室

燃焼室(ねんしょうしつ)は、燃料が燃焼する空間であり、熱機関に於いては燃焼(酸化)により熱エネルギーを発生する部位である。.

ジェットエンジンと燃焼室 · 内燃機関と燃焼室 · 続きを見る »

燃焼ガス

燃焼ガス(ねんしょうガス)とは、石油、石炭といった燃料が燃焼するときに発生する高温の気体である。 原動機では回転動力を得るために意図的に燃焼させ、発生した熱エネルギーを運動エネルギーへ変換している。機関内で仕事を終えた燃焼ガスは排出され、排出ガス/排気ガスとなる。.

ジェットエンジンと燃焼ガス · 内燃機関と燃焼ガス · 続きを見る »

燃料

木は最も古くから利用されてきた燃料の1つである 燃料(ねんりょう)とは、化学反応・原子核反応を外部から起こすことなどによってエネルギーを発生させるもののことである。古くは火をおこすために用いられ、次第にその利用の幅を広げ、現在では火をおこさない燃料もある。.

ジェットエンジンと燃料 · 内燃機関と燃料 · 続きを見る »

遠心式圧縮機

遠心式圧縮機(えんしんしきあっしゅくき、centrifugal compressor, radial compressor)とは、気体を羽根車からディフューザーに流し遠心方向(径方向)に徐々に減速させることにより、運動エネルギーの変換が行われる圧縮機であるJIS B 0132 2005。遠心圧縮機、遠心コンプレッサーともいう。.

ジェットエンジンと遠心式圧縮機 · 内燃機関と遠心式圧縮機 · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

ジェットエンジンと運動エネルギー · 内燃機関と運動エネルギー · 続きを見る »

馬力

力(ばりき)は工率の単位である。今日では、ヤード・ポンド法に基づく英馬力、メートル法に基づく仏馬力を始めとして、馬力の定義はいくつかある。日本の計量法では、仏馬力を特例的に当分の間のみ認めており、 正確に 735.5 ワットと定義している。 国際単位系 (SI) における仕事率、工率の単位はワット (W) であり、馬力は併用単位にもなっていない。.

ジェットエンジンと馬力 · 内燃機関と馬力 · 続きを見る »

軸流式圧縮機

軸流式圧縮機のアニメーション。静止している部分は静翼 軸流式圧縮機(じくりゅうしきあっしゅくき、Axial compressor)とは、流体機械である圧縮機の一種で、ターボ圧縮機に分類される。回転翼の前後に生じる圧力差を利用し、気体を連続的に圧縮する装置。軸流コンプレッサ(ー)とも呼ばれる。.

ジェットエンジンと軸流式圧縮機 · 内燃機関と軸流式圧縮機 · 続きを見る »

航空用エンジン

航空用エンジン (こうくうようエンジン、英語:Aircraft engine)または航空エンジンは、航空機に搭載され、航空機の飛行に必要な推力(推進力)を生み出すエンジンである。補助動力装置やラムエア・タービンなど電源や油圧を確保するエンジンは含まれない。 現在使われている航空機用エンジンは全て内燃機関であるが、研究用又はデモンストレーション用に電動機などを使ったものが存在する(後述)。.

ジェットエンジンと航空用エンジン · 内燃機関と航空用エンジン · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

ジェットエンジンと酸素 · 内燃機関と酸素 · 続きを見る »

He 178 (航空機)

ハインケル He 178 V2 (試作2号機) 300px 概要 役割実験機 乗員1人 大きさ 全長7.48 m 翼長7.20 m 全高2.10 m 翼面積9.1 m2 重量 自重1,620 kg 積載量1,998 kg 動力 エンジンHeS 3b ターボジェットエンジン 推力(初飛行時)450 kg 性能 最高速度700 km/h(計画値) 航続距離(理論値)200 km 飛行時間(達成値)8 分 ハインケル He 178 (Heinkel He 178) は、ドイツのハインケル社 (Ernst Heinkel Flugzeugwerke) が手掛けた、世界初のターボジェット推進機。 プロペラを用いない航空機としては1910年のコアンダ.

He 178 (航空機)とジェットエンジン · He 178 (航空機)と内燃機関 · 続きを見る »

水素

水素(すいそ、hydrogenium、hydrogène、hydrogen)は、原子番号 1 、原子量 1.00794の非金属元素である。元素記号は H。ただし、一般的には「水素」と言っても、水素の単体である水素分子(水素ガス) H を指していることが多い。 質量数が2(原子核が陽子1つと中性子1つ)の重水素(H)、質量数が3(原子核が陽子1つと中性子2つ)の三重水素(H)と区別して、質量数が1(原子核が陽子1つのみ)の普通の水素(H)を軽水素とも呼ぶ。.

ジェットエンジンと水素 · 内燃機関と水素 · 続きを見る »

上記のリストは以下の質問に答えます

ジェットエンジンと内燃機関の間の比較

内燃機関が121を有しているジェットエンジンは、284の関係を有しています。 彼らは一般的な38で持っているように、ジャカード指数は9.38%です = 38 / (284 + 121)。

参考文献

この記事では、ジェットエンジンと内燃機関との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »