ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

−1とネイピア数

ショートカット: 違い類似点ジャカード類似性係数参考文献

−1とネイピア数の違い

−1 vs. ネイピア数

−1(マイナスいち)は、最大の負の整数であり、整数を小さい順に並べたとき、−2 の次で 0 の前である(0 からマイナス無限大へ数えれば、最初の負の数で、0 の次で −2 の前である)。. 1.

−1とネイピア数間の類似点

−1とネイピア数は(ユニオンペディアに)共通で4ものを持っています: 微分オイラーの公式円周率自然数

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

−1と微分 · ネイピア数と微分 · 続きを見る »

オイラーの公式

数学、特に複素解析におけるオイラーの公式(オイラーのこうしき、Euler's formula)は、指数関数と三角関数の間に成り立つ以下の関係をいう。 ここで は指数関数、 は虚数単位、 はそれぞれ余弦関数および正弦関数である指数関数 は累乗を拡張したもので、複素数 について という関係が成り立つ。 は自然対数の底あるいはネイピア数と呼ばれる。虚数単位 は を満たす複素数である。余弦関数 および正弦関数 は三角関数の一種である。正弦関数 は、直角三角形の斜辺とその三角形の変数 に対応する角度を持つ鋭角の対辺(正弦)の長さの比を表す。余弦関数 はもう一方の鋭角(余角)の対辺と斜辺の長さの比を表す。単位円(半径の長さを 1 とする円)の中心を原点とする直交座標系をとったとき、単位円上の点を表す 座標はそれぞれ に等しい( は円の中心と円周上の点を結ぶ直線と、 軸のなす角の大きさに対応する)。文献によっては、指数関数は、(指数)から3字取って と表される。また虚数単位には でなく を用いることがある。。任意の複素数 に対して成り立つ等式であるが、特に が実数である場合が重要でありよく使われる。 が実数のとき、 は複素数 がなす複素平面上の偏角(角度 の単位はラジアン)に対応する。 公式の名前は18世紀の数学者レオンハルト・オイラー (Leonhard Euler) に因むが、最初の発見者はロジャー・コーツ (Roger Cotes) とされる。コーツは1714年に を発見したが、三角関数の周期性による対数関数の多価性を見逃した。 1740年頃オイラーはこの対数関数の形での公式から現在オイラーの公式の名で呼ばれる指数関数での形に注意を向けた。指数関数と三角関数の級数展開を比較することによる証明が得られ出版されたのは1748年のことだった。 この公式は複素解析をはじめとする純粋数学の様々な分野や、電気工学・物理学などで現れる微分方程式の解析において重要な役割を演じる。物理学者のリチャード・ファインマンはこの公式を評して「我々の至宝」かつ「すべての数学のなかでもっとも素晴らしい公式」 だと述べている。 オイラーの公式は、変数 が実数である場合には、右辺は実空間上で定義される通常の三角関数で表され、虚数の指数関数の実部と虚部がそれぞれ角度 に対応する余弦関数 と正弦関数 に等しいことを表す。このとき、偏角 をパラメータとする曲線 は、複素平面上の単位円をなす。 特に、 のとき(すなわち偏角が 180 度のとき)、 となる。この関係はオイラーの等式 と呼ばれる三角関数の周期性(従って複素指数関数の周期性)により、オイラーの等式が成り立つのは に限らない。すなわち、任意の整数 について は を満たす。。 が純虚数である場合には、左辺は実空間上で定義される通常の指数関数であり、右辺は純虚数に対する三角関数となる。 オイラーの公式は、三角関数 が双曲線関数 に対応することを導く。また応用上は、オイラーの公式を経由して三角関数を複素指数関数に置き換えることで、微分方程式やフーリエ級数などの扱いを簡単にすることなどに利用される。.

−1とオイラーの公式 · オイラーの公式とネイピア数 · 続きを見る »

円周率

円周率(えんしゅうりつ)は、円の周長の直径に対する比率として定義される数学定数である。通常、ギリシア文字 (パイ、ピー、ラテン文字表記: )で表される。数学をはじめ、物理学、工学といった様々な科学分野に出現し、最も重要な数学定数とも言われる。 円周率は無理数であり、その小数展開は循環しない。円周率は、無理数であるのみならず、超越数でもある。 円周率の計算において功績のあったルドルフ・ファン・コーレンに因み、ルドルフ数とも呼ばれる。ルドルフは、小数点以下35桁までを計算した。小数点以下35桁までの値は次の通りである。.

−1と円周率 · ネイピア数と円周率 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

−1と自然数 · ネイピア数と自然数 · 続きを見る »

上記のリストは以下の質問に答えます

−1とネイピア数の間の比較

ネイピア数が43を有している−1は、69の関係を有しています。 彼らは一般的な4で持っているように、ジャカード指数は3.57%です = 4 / (69 + 43)。

参考文献

この記事では、−1とネイピア数との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »