ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

DNAコンピュータ

索引 DNAコンピュータ

DNAコンピュータ(ディーエヌエーコンピュータ)とは、デオキシリボ核酸 (DNA) の4種類の塩基を演算素子にして計算をするコンピュータ。非ノイマン型方式。.

33 関係: 半導体素子南カリフォルニア大学塩基化学結合ノイマン型チューリングマシンハミルトン閉路問題ポリメラーゼ連鎖反応レオナルド・エーデルマンプログラミング (コンピュータ)デオキシリボ核酸ニューロコンピュータ制限酵素分子イスラエルオリンパスコンピュータジェームズ・ワトソンスーパーコンピュータ出力細胞DNAポリメラーゼDNAリガーゼ超並列マシン量子コンピュータ酵素電気泳動NP困難RSA暗号東京大学数学1994年2002年

半導体素子

ここでは半導体素子(はんどうたいそし)や半導体部品(-ぶひん)(英:semiconductor device) セミコンダクター・デバイスについて解説する。.

新しい!!: DNAコンピュータと半導体素子 · 続きを見る »

南カリフォルニア大学

Bovard Administration Building Mudd Hall of Philosophy ドヘニー図書館 トミートロージャン ロサンゼルス・メモリアル・コロシアム.

新しい!!: DNAコンピュータと南カリフォルニア大学 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: DNAコンピュータと塩基 · 続きを見る »

化学結合

化学結合(かがくけつごう)は化学物質を構成する複数の原子を結びつけている結合である。化学結合は分子内にある原子同士をつなぎ合わせる分子内結合と分子と別の分子とをつなぎ合わせる分子間結合とに大別でき、分子間結合を作る力を分子間力という。なお、金属結晶は通常の意味での「分子」とは言い難いが、金属結晶を構成する結合(金属結合)を説明するバンド理論では、分子内結合における原子の数を無限大に飛ばした極限を取ることで、金属結合の概念を定式化している。 分子内結合、分子間結合、金属結合のいずれにおいても、化学結合を作る力は原子の中で正の電荷を持つ原子核が、別の原子の中で負の電荷を持つ電子を電磁気力によって引きつける事によって実現されている。物理学では4種類の力が知られているが、電磁気力以外の3つの力は電磁気力よりも遥かに小さい為、化学結合を作る主要因にはなっていない。したがって化学結合の後述する細かな分類、例えば共有結合やイオン結合はどのような状態の原子にどのような形で電磁気力が働くかによる分類である。 化学結合の定式化には、複数の原子がある場合において電子の軌道を決定する必要があり、そのためには量子力学が必須となる。しかし多くの簡単な化合物や多くのイオンにおいて、化学結合に関する定性的な説明や簡単な定量的見積もりを行う分には、量子力学で得られた知見に価電子や酸化数といった分子の構造と構成を使って古典力学的考察を加える事でも可能である。 それに対し複雑な化合物、例えば金属複合体では価電子理論は破綻し、その振る舞いの多くは量子力学を基本とした理解が必要となる。これに関してはライナス・ポーリングの著書、The Nature of the Chemical Bondで詳しく述べられている。.

新しい!!: DNAコンピュータと化学結合 · 続きを見る »

ノイマン型

ノイマン型(-がた、von Neumann architecture)は、コンピュータの基本的な構成法のひとつである。今日では基本的なコンピュータ・アーキテクチャのひとつとされるが、そもそもコンピュータの要件とされることもあり、このあたりの定義は循環的である。 プログラム内蔵方式のディジタルコンピュータで、CPU(中心となるプロセッサ、今日では一つの部品としてまとめて考えることが多いが、オリジナルの報告書では制御装置と演算装置に分けている)とアドレス付けされた記憶装置とそれらをつなぐバスを要素に構成され、命令(プログラム)とデータを区別せず記憶装置に記憶する。 プログラムカウンタを構成要素に含め、またより抽象的なモデルにおける命令スケジューラの実装とみることがある。また、今日では、演算などの命令の実行は演算装置を含む実行ユニットで行われる、というように考えられることもある。 オリジナルの報告書では、入出力について特別に扱っているが、今日の視点からではメモリマップドI/Oを考えれば特に必要ない。また、バスは、報告書では明示的に数え上げてはいないが(言及はある)、今日ではフォン・ノイマン・ボトルネックのように明確に認識される存在である。 ノイマン型の名は、最初にこれを広めたEDVACに関する報告書 w:First Draft of a Report on the EDVAC(1945)の著者がジョン・フォン・ノイマン(ひとり)になっていることに由来する。誰がなんのためにそうしたかについては諸説ある。このアイディア、特にプログラム内蔵方式のアイディアは、ジョン・モークリーとジョン・エッカートによるENIACのプロジェクト中の検討にその芽があった。ノイマンは(理論的な、とされる)助言役として加わり、執筆者はノイマンであった。誰にどのような功績があったかは諸説ある。 この方式について、以後のコンピュータ研究開発に大きな影響を与えた1946年夏のムーアスクールで講義したのは、ノイマンではなくモークリーとエッカートであったし、ノイマン型という用語は不当だとして、使わない者もいる。一方で、EDSACの設計・建造者であるモーリス・ウィルクスは、ENIACが軍事機密の下にあった時に、ノイマンの草稿がその保護に入らず、多くの人がノイマンを発明者だとみなしたことは不公平な結果だったとし、ノイマンの参加以前に本質的な先進があった、としながらも、数値データと命令を同じ記憶装置の中に置くのは不自然である、とか、そのために必要な遅延記憶装置は信頼性に欠ける、といった、新規技術への疑念に対し、物理学者として、また数学者(計算理論)として、ノイマンが計算機の潜在能力を見抜き、信望と影響力を行使したことは重要だった、とも述べている。.

新しい!!: DNAコンピュータとノイマン型 · 続きを見る »

チューリングマシン

チューリングマシン (Turing Machine) は計算模型のひとつで、計算機を数学的に議論するための単純化・理想化された仮想機械である。.

新しい!!: DNAコンピュータとチューリングマシン · 続きを見る »

ハミルトン閉路問題

ハミルトン閉路問題(ハミルトンへいろもんだい)とは、与えられたグラフについて、全ての頂点を一度だけ通る閉路が存在するかどうか調べる問題である。名称はこの問題を最初に研究した数学者ウィリアム・ローワン・ハミルトンの名に因む。.

新しい!!: DNAコンピュータとハミルトン閉路問題 · 続きを見る »

ポリメラーゼ連鎖反応

ポリメラーゼ連鎖反応(ポリメラーゼれんさはんのう、polymerase chain reaction, PCR)は、DNAを増幅するための原理またはそれを用いた手法で、手法を指す場合はPCR法と呼ばれることの方が多い。英語をそのまま片仮名読みにして「ポリメラーゼ・チェーン・リアクション」とも呼ばれる。次の特徴を持つ。.

新しい!!: DNAコンピュータとポリメラーゼ連鎖反応 · 続きを見る »

レオナルド・エーデルマン

レオナルド・マックス・エーデルマン(Leonard Max Adleman, 1945年12月31日 - )は、アメリカの暗号の研究者で理論計算機科学者。レナード・エイドルマンとも 南カリフォルニア大学で計算機科学と分子生物学の教授を務めている。1978年にロナルド・リベスト、アディ・シャミアとともにRSA暗号を発明したことで知られる。RSA暗号は電子署名などコンピュータセキュリティアプリケーションに広く使われている。この業績により2002年にチューリング賞を受賞。また、DNAコンピュータの考案者でもある。.

新しい!!: DNAコンピュータとレオナルド・エーデルマン · 続きを見る »

プログラミング (コンピュータ)

ンピュータのプログラミング(programming)とは、コンピュータプログラムを作成することにより、人間の意図した処理を行うようにコンピュータに指示を与える行為である。.

新しい!!: DNAコンピュータとプログラミング (コンピュータ) · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: DNAコンピュータとデオキシリボ核酸 · 続きを見る »

ニューロコンピュータ

ニューロコンピュータとは、脳を構成する神経細胞が神経回線網を張り巡らせることで情報処理を司るという動作を基本原理とするコンピュータである。非ノイマン型方式。 ニューラルネットワーク制御(知的制御の1つ。システムの入出力信号をもとにしてニューラルネットによって非線形な入出力関係を再現し、それを制御対象とする制御手法。)を基礎理論とする。.

新しい!!: DNAコンピュータとニューロコンピュータ · 続きを見る »

制限酵素

制限酵素(せいげんこうそ)は、酵素の一種。2本鎖のDNAを切断する。必須因子や切断様式により3種類に大別されるが、そのうちのII型酵素が遺伝子組み換えに多用される。.

新しい!!: DNAコンピュータと制限酵素 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: DNAコンピュータと分子 · 続きを見る »

イスラエル

イスラエル国(イスラエルこく、מְדִינַת יִשְׂרָאֵל メディナット・イスラエル、دولة إسرائيل ダウラト・イスラーイール、State of Israel )、通称イスラエルは、中東のパレスチナに位置する国家。北にレバノン、北東にシリア、東にヨルダン、南にエジプトと接する。ガザ地区とヨルダン川西岸地区を支配するパレスチナ自治政府(パレスチナ国)とは南西および東で接する。地中海および紅海にも面している。首都はエルサレムであると主張しているが、国際連合などはテルアビブをイスラエルの首都とみなしている(エルサレム#首都問題を参照)。 イスラエルは、シオニズム運動を経て1948年5月14日に建国された。建国の経緯に根ざす問題は多い。版図に関するものではパレスチナ問題がよく報道される。.

新しい!!: DNAコンピュータとイスラエル · 続きを見る »

オリンパス

リンパス株式会社(Olympus Corporation)は、日本の光学機器・電子機器メーカーである。本社は東京都新宿区西新宿に所在。.

新しい!!: DNAコンピュータとオリンパス · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: DNAコンピュータとコンピュータ · 続きを見る »

ジェームズ・ワトソン

ェームズ・デューイ・ワトソン(James Dewey Watson, 1928年4月6日 - )は、DNAの分子構造における共同発見者の一人として知られる、アメリカ出身の分子生物学者である。ワトソン及び、フランシス・クリック、モーリス・ウィルキンスらは、「核酸の分子構造および生体における情報伝達に対するその意義の発見」に対して、1962年にノーベル生理学・医学賞を受賞した。.

新しい!!: DNAコンピュータとジェームズ・ワトソン · 続きを見る »

スーパーコンピュータ

ーパーコンピュータ(supercomputer)は、科学技術計算を主要目的とする大規模コンピュータである。日本国内での略称はスパコン。また、計算科学に必要となる数理からコンピュータシステム技術までの総合的な学問分野を高性能計算と呼ぶ。スーパーコンピュータでは計算性能を最重要視し、最先端の技術が積極的に採用されて作られる。.

新しい!!: DNAコンピュータとスーパーコンピュータ · 続きを見る »

出力

出力(しゅつりょく)は、何らかの対象から出る信号や力、またその種類や大きさのことである。入力の対義語。アウトプット(output)ともいう。 主に以下のような分野の用語として使われる。.

新しい!!: DNAコンピュータと出力 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: DNAコンピュータと細胞 · 続きを見る »

DNAポリメラーゼ

DNA ポリメラーゼ (DNA polymerase; -ポリメレース) は1本鎖の核酸を鋳型として、それに相補的な塩基配列を持つ DNA 鎖を合成する酵素の総称。一部のウイルスを除くすべての生物に幅広く存在する。DNA を鋳型としてDNA を合成する DNA 依存性 DNA ポリメラーゼ(EC 2.7.7.7)と、RNA を鋳型として DNA を合成する RNA 依存性 DNA ポリメラーゼ(EC 2.7.7.49)の、2つのタイプに分けられる。前者はDNA複製やDNA修復において中核的な役割を担う酵素である。一方後者はセントラルドグマの範疇から逸脱する位置にある酵素で、逆転写酵素やテロメラーゼを含む。.

新しい!!: DNAコンピュータとDNAポリメラーゼ · 続きを見る »

DNAリガーゼ

DNAリガーゼ(ディーエヌエーリガーゼ、)は、DNA鎖の末端同士をリン酸ジエステル結合でつなぐ酵素である。生体内では主としてDNA複製とDNA修復に寄与している。一方、遺伝子工学で組換えDNAを作るために頻繁に利用されている。EC番号は(基質ATP)または(基質NAD+)。英語での発音に倣ってDNAライゲースともいい、ポリデオキシリボヌクレオチドシンターゼ、ポリヌクレオチドリガーゼなどとも呼ばれる。.

新しい!!: DNAコンピュータとDNAリガーゼ · 続きを見る »

超並列マシン

超並列マシン (ちょうへいれつマシン、Massively parallel machine) は1990年代から台頭してきた、並列計算機の中で規模の大きなもの(CPU数の多いもの)を言う。大規模クラスターマシン、大規模ワークステーションクラスター、地球シミュレーターなども超並列マシンの範疇に入れることができる。時代と共に並列度は大きくなり、CPU性能は向上するため、何個以上のCPU数(或いは性能)で超並列であるというはっきりとした定義はない。 超並列マシンは分散メモリ型のコンピュータシステムであり、多数のノードから構成され、各ノードは基本的に独立したコンピュータとなっている。本来の超並列マシンはnCUBEやコネクションマシンなどのように、ほとんどのノードがCPUとメモリとノード間接続用の通信ポートのみで構成されるものであった。ノード間通信にはMPIのような標準的なプロトコルを使用してメッセージをやり取りする。2005年現在のスーパーコンピュータはほとんどが超並列マシンである。超並列マシンの性能は、実行しようとするアプリケーションの並列性と、スレッド間の通信量に左右される。アプリケーションの並列性が高ければ多くのノードに展開して並列実行できるため、性能向上が期待できる。しかし、共有メモリ型と異なり、あるスレッドの実行結果をメモリに置くだけでは他のスレッドからは見えないため、通信が必要となる。したがって、計算途中に他のスレッドの結果を待ち合わせなければならないようなアプリケーションではノード数に比例した性能向上は期待できない。超並列マシンでの計算性能の向上は研究の活発な領域である。.

新しい!!: DNAコンピュータと超並列マシン · 続きを見る »

量子コンピュータ

量子コンピュータ (りょうしコンピュータ、英語:quantum computer) は、量子力学的な重ね合わせを用いて並列性を実現するとされるコンピュータ。従来のコンピュータの論理ゲートに代えて、「量子ゲート」を用いて量子計算を行う原理のものについて研究がさかんであるが、他の方式についても研究・開発は行われている。 いわゆる電子式など従来の一般的なコンピュータ(以下「古典コンピュータ」)の素子は、情報について、「0か1」などなんらかの2値をあらわすいずれかの状態しか持ち得ない「ビット」で扱う。量子コンピュータは「量子ビット」 (qubit; quantum bit、キュービット) により、重ね合わせ状態によって情報を扱う。 n量子ビットがあれば、2^nの状態を同時に計算できる。もし、数千qubitのハードウェアが実現した場合、この量子ビットを複数利用して、量子コンピュータは古典コンピュータでは実現し得ない規模の並列コンピューティングが実現する。2^以下)で数千年かかっても解けないような計算でも、例えば数十秒といった短い時間でこなすことができる、とされている。--> 量子コンピュータの能力については、計算理論上の議論と、実際に実現されつつある現実の機械についての議論がある。#計算能力の節を参照。.

新しい!!: DNAコンピュータと量子コンピュータ · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: DNAコンピュータと酵素 · 続きを見る »

電気泳動

電気泳動装置 電気泳動(でんきえいどう)は、荷電粒子あるいは分子が電場(電界)中を移動する現象。あるいは、その現象を利用した解析手法。特に分子生物学や生化学ではDNAやタンパク質を分離する手法としてなくてはならないものである。.

新しい!!: DNAコンピュータと電気泳動 · 続きを見る »

NP困難

NP完全、'''NP困難'''の相関を表すベン図 NP困難(エヌピーこんなん、NP-hard)とは計算量理論において、問題が「NPに属する任意の問題と比べて、少なくとも同等以上に難しい」ことである。正確にいうと問題 H がNP困難であるとは、「NPに属する任意の問題 L が H へ帰着可能である」と定義される。この「帰着」の定義として何を用いるかにより微妙に定義が異なることになるが、例えば多項式時間多対一帰着や多項式時間チューリング帰着を用いる。NP困難問題を解ける多項式時間の機械がもしあれば、それを利用してNPに属するどの問題も多項式時間で解くことができる。 NP完全問題とは、NP困難であり、かつNPに属する問題である。これと異なり、NP困難である問題はNPに属するとは限らない。NPは決定問題のクラスなのでNP完全もまた決定問題に限られるが、定義に用いる帰着の種類によってはNP困難には決定問題、探索問題(en)、組合せ最適化問題など様々な問題が属しうる。 上に挙げた定義から、問題 H がNP困難なとき次のことが言える(以下は定義ではなく主張)。.

新しい!!: DNAコンピュータとNP困難 · 続きを見る »

RSA暗号

RSA暗号とは、桁数が大きい合成数の素因数分解問題が困難であることを安全性の根拠とした公開鍵暗号の一つである。 暗号とデジタル署名を実現できる方式として最初に公開されたものである。.

新しい!!: DNAコンピュータとRSA暗号 · 続きを見る »

東京大学

記載なし。

新しい!!: DNAコンピュータと東京大学 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: DNAコンピュータと数学 · 続きを見る »

1994年

この項目では、国際的な視点に基づいた1994年について記載する。.

新しい!!: DNAコンピュータと1994年 · 続きを見る »

2002年

この項目では、国際的な視点に基づいた2002年について記載する。.

新しい!!: DNAコンピュータと2002年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »