ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

DFPT法

索引 DFPT法

DFPT法は、密度汎関数摂動論(英語:density functional perturbation theory、略称:DFPT)に基づく電子状態計算の方法の一つ。分子または結晶中の原子核の変位に対応するポテンシャル変化を摂動として扱い、摂動状態についても非摂動状態と同様に、拘束条件付き変分原理を満たす形式で記述できるとした理論。周期系に対するDFPTはBaroniらによって1987年に提唱された。DFPTにより、任意の波数ベクトルを持つ原子の変位に伴う全エネルギーの二階微分を高精度で効率よく計算できる(線形応答理論を使う)。これから基準振動のエネルギーまたはフォノンバンド(フォノンバンドからフォノン状態密度も求められる)を得る事ができる。同様の手法を使ってマグノンの計算をさせることも可能。 DFPT法で扱う系が超伝導体の場合、DFPT法で得られたフォノン(格子振動)に関しての情報と、同時に求めた電子状態の情報から、BCS理論の範囲内での超伝導になる転移温度を求めることができる。通常のバンド計算手法でも、フォノン等の情報が従来型の方法で求められれば上記と同様に超伝導転移温度の計算は可能。 また、フォノンの分散だけでなく誘電率、弾性定数、圧電定数などの応答係数の計算にも適用されている。.

18 関係: 原子核変位変分原理微分マグノンフォノンフォノンバンド分子BCS理論第一原理バンド計算線形応答理論結晶超伝導転移温度英語電子状態計算摂動1987年

原子核

原子核(げんしかく、atomic nucleus)は、単に核(かく、nucleus)ともいい、電子と共に原子を構成している。原子の中心に位置する核子の塊であり、正の電荷を帯びている。核子は、基本的には陽子と中性子から成っているが、通常の水素原子(軽水素)のみ、陽子1個だけである。陽子と中性子の個数、すなわち質量数によって原子核の種類(核種)が決まる。 原子核の質量を半経験的に説明する、ヴァイツゼッカー=ベーテの質量公式(原子核質量公式、他により改良された公式が存在する)がある。.

新しい!!: DFPT法と原子核 · 続きを見る »

変位

変位(へんい、displacement)とは、物体の位置の変化のこと。変位の対象は、古典力学での質点の位置であったり、結晶(固体、あるいは結晶表面やそれに吸着した原子、分子など)での原子の位置(原子変位)であったりする。表記は、変位の大きさに着目する x, d のような場合や、変化した前後の位置の差であるという点に注目する Δr という場合がある。物理量としての変位はベクトルで使うことが多く、変位ベクトルと呼ばれる。 物体の位置を表現するには原点からの位置ベクトルを使う方法もある。どこかに基準点を定めるということでは変位もあまり違わないが、局所的な現象をあらわすときには基準位置とそこからの変位で記述したほうが簡単になることもある。変位x と位置ベクトルr は次の式で変換できる。 ここでr0 は基準点の位置ベクトルである。.

新しい!!: DFPT法と変位 · 続きを見る »

変分原理

変分原理(へんぶんげんり、英語:variational principle)は、変分法を用いた物理学の原理。 特に、.

新しい!!: DFPT法と変分原理 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: DFPT法と微分 · 続きを見る »

マグノン

マグノン()は、結晶格子中の電子のスピンの構造を量子化した準粒子である。一方、結晶格子中での原子やイオンの振動を量子化した準粒子は、フォノンという。量子力学における波の描像では、マグノンはスピン波を量子化したものと見なすことができる。準粒子として、マグノンは一定の量のエネルギーと格子運動量を運搬する。プランク定数を2πで割ったディラック定数のスピンを持つ。.

新しい!!: DFPT法とマグノン · 続きを見る »

フォノン

フォノン(phonon)、音子、音響量子、音量子は、振動(主に結晶中での格子振動)を量子化した粒子(準粒子、素励起)である。 振幅が大きくなる、つまり振動が激しくなることはフォノンの数が増えることで表される。 フォノンを持つ液体としては、超流動を示すヘリウム4がある。 原子核表面の核子の振動を量子化したものもフォノンと言う。.

新しい!!: DFPT法とフォノン · 続きを見る »

フォノンバンド

フォノンバンドは、フォノン(量子化された格子振動)の分散曲線のこと。 単位格子に1個の原子しかない結晶では、単一のバンドを形成する。 単位格子に2個以上の原子がある結晶では、低エネルギー側の音響バンドと、高エネルギー側の光学バンドが現れる。この2つのバンド間のギャップをフォノンギャップと呼ぶ。.

新しい!!: DFPT法とフォノンバンド · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: DFPT法と分子 · 続きを見る »

BCS理論

BCS理論(ビーシーエスりろん、BCS theory、Bardeen Cooper Schrieffer)とは、1911年の超伝導現象発見以来、初めてこの現象を微視的に解明した理論。1957年に米国、イリノイ大学のジョン・バーディーン、レオン・クーパー、ジョン・ロバート・シュリーファーの三人によって提唱された。三人の名前の頭文字からBCSと付けられた。この理論によると超伝導転移温度や比熱などが、式により表される。三人はこの業績により1972年のノーベル物理学賞を受賞した。.

新しい!!: DFPT法とBCS理論 · 続きを見る »

第一原理バンド計算

一原理バンド計算(だいいちげんりバンドけいさん)は、実験結果に依らないで(第一原理)計算が遂行されるバンド計算である。第一原理電子構造計算、第一原理電子状態計算、あるいは単にバンド計算とも言う。 第一原理バンド計算手法には、様々なものがある。主に、擬ポテンシャル+平面波基底によるものと、全電子による電子状態計算手法とがある。全電子手法には、LMTO法、APW法、線形化 APW 法(LAPW法)、KKR法とそのフルポテンシャル版などがある。.

新しい!!: DFPT法と第一原理バンド計算 · 続きを見る »

線形応答理論

線形応答理論(線型—、せんけいおうとうりろん、linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、森肇、冨田和久、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸(パワーロス)を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。.

新しい!!: DFPT法と線形応答理論 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: DFPT法と結晶 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: DFPT法と超伝導 · 続きを見る »

転移温度

転移温度 (てんいおんど、Transition temperature) は相転移を起こす温度のこと。転移温度をTcと書くこともあるが、異なる場合もある(例:反強磁性におけるネール温度をTNと書いたりする)。 超伝導において、常伝導から超伝導、超伝導から常伝導に相転移する温度のことを超伝導転移温度、あるいは転移温度という。または、臨界温度ともいう。記号はどちらもTc(critical temperature)を使う。 このTcは、BCS理論の中でも最も有名な次の理論式、デバイ温度ΘD、状態密度N(0)、相互作用強さVで表される。 Tc.

新しい!!: DFPT法と転移温度 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: DFPT法と英語 · 続きを見る »

電子状態計算

電子状態計算(でんしじょうたいけいさん、Electronic structure calculation、電子構造計算とも言う)とは、結晶、表面、クラスター、分子(高分子も含む)、原子などの系の電子状態(電子構造)を求める計算のこと。計算手法としては、バンド計算、量子化学的手法などがある。.

新しい!!: DFPT法と電子状態計算 · 続きを見る »

摂動

摂動(せつどう、 perturbation)とは、一般に力学系において、主要な力の寄与(主要項)による運動が、他の副次的な力の寄与(摂動項)によって乱される現象である。摂動という語は元来、古典力学において、ある天体の運動が他の天体から受ける引力によって乱れることを指していたが、その類推から量子力学において、粒子の運動が複数粒子の間に相互作用が働くことによって乱れることも指すようになった。なお、転じて摂動現象をもたらす副次的な力のことを摂動と呼ぶ場合がある。.

新しい!!: DFPT法と摂動 · 続きを見る »

1987年

この項目では、国際的な視点に基づいた1987年について記載する。.

新しい!!: DFPT法と1987年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »