ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

数列空間

索引 数列空間

関数解析学および関連する数学の分野における数列空間(すうれつくうかん、)とは、実数あるいは複素数の無限列を元とするベクトル空間のことを言う。またそれと同値であるが、自然数から実あるいは複素数体 K への関数を元とする関数空間のことでもある。そのような関数すべてからなる集合は、K に元を持つ無限列すべてからなる集合であると自然に認識され、関数の点ごとの和および点ごとのスカラー倍の作用の下で、ベクトル空間と見なされる。すべての数列空間は、この空間の線型部分空間である。通常、数列空間はノルムを備えるものであり、そうでなくとも少なくとも位相ベクトル空間の構造を備えている。 解析学におけるもっとも重要な数列空間のクラスは、p-乗総和可能数列からなる関数空間 ℓp である。それらの空間は p-ノルムを備え、自然数の集合上の数え上げ測度に対するL''p''空間の特別な場合と見なされる。収束列や零列のような他の重要な数列のクラスも数列空間を構成し、それらの場合はそれぞれ c および c0 と表記され、上限ノルムが備えられる。任意の数列空間は各点収束の位相を備えるものでもあり、その位相の下でのそれらの空間は、と呼ばれるフレシェ空間の特殊な場合となる。.

47 関係: 埋め込み (数学)単射可分空間可換体双対ベクトル空間同型写像各点収束実数完備距離空間一様ノルム弱位相強位相位相空間作用素ノルムノルムバナッハ空間ヘルダーの不等式ヒルベルト空間フレシェ空間ベクトル空間列 (数学)コンパクト作用素商空間回帰的空間Ba空間稠密集合等長写像線型位相空間線型部分空間絶対値点ごと複素数記号の濫用距離函数関数の台関数空間関数解析学自然数連続的双対空間Lp空間極限有向点族有界函数数え上げ測度数学数列数列の極限

埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

新しい!!: 数列空間と埋め込み (数学) · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 数列空間と単射 · 続きを見る »

可分空間

数学の位相空間論における可分空間(かぶんくうかん、separable space)とは、可算な稠密部分集合を持つような位相空間をいう。つまり、空間の点列 で、その空間の空でない任意の開集合が少なくとも一つその点列の項を含むものが存在する。 他の可算公理と同様に、可分性は(濃度の言葉を必ずしも用いない)位相空間により適した集合の「大きさの制限」を与えるものである(とはいえハウスドルフの公理の存在においてはこの限りでないが)。特に、可分空間上の連続写像でその像がハウスドルフ空間の部分集合であるようなものは全て、その可算稠密部分集合上の値によって決定される。 一般に、可分性は極めて有用で(幾何学や古典的な解析学で研究されるような空間のクラスに対しては)きわめて緩やかなものと一般に考えられる、空間への技術的仮定である。可分性とそれに関連のある第二可算性の概念の比較は重要である(第二可算のほうが一般には強い条件だが、距離化可能な空間のクラスでは同値になる。.

新しい!!: 数列空間と可分空間 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 数列空間と可換体 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 数列空間と双対ベクトル空間 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 数列空間と同型写像 · 続きを見る »

各点収束

数学において、各点収束 (pointwise convergence) は関数列の収束の概念の1つである。.

新しい!!: 数列空間と各点収束 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 数列空間と実数 · 続きを見る »

完備距離空間

位相空間論あるいは解析学において、距離空間 M が完備(かんび、complete)またはコーシー空間(コーシーくうかん、Cauchy space)であるとは、M 内の任意のコーシー点列が M に属する極限を持つ(任意のコーシー点列が収束する)ことを言う。 直観的に言えば、空間が完備であるというのは(その内側や境界において)点を追いかけると「空間からはみ出してしまう」ということが起きないということである。例えば、有理数全体の成す集合 Q は完備でないが、これは例えば 2 の正の平方根は、それに収束する有理コーシー数列が構成できるにも拘らず、有理数ではないので Q からははみ出してしまう(後述)。「こういった抜けを全て埋めてしまう」という考えは後述するように、空間の完備化 (completion) として常に可能である。.

新しい!!: 数列空間と完備距離空間 · 続きを見る »

一様ノルム

'''R'''2 上の最大値ノルム一定な点の軌跡は、図のような黒い正方形を描く。 数学の解析学の分野における一様ノルム(いちようノルム、)は、ある集合 S 上定義される有界な実または複素数値関数 f に対して、非負実数値 を割り当てるものである。このノルムは上限ノルム、チェビシェフノルムあるいは無限大ノルムなどとも呼ばれる。「一様ノルム」という名は、このノルムにより定められる距離についてある関数列 (fn) が f に収束することと、fn が f に一様収束することが必要十分であるという事実による。 一様ノルムに下付きの "∞" が用いられているのは、f が連続なる限り p-次平均収束ノルム が成り立つことによる。ここで D は f の定義域、積分は D が離散集合のときは単なる総和で置き換えられる。 有界でない関数 f をも考慮に入れるならば、上の定義は厳密な意味でのノルムあるいは距離を導くものではない。しかしいわゆる拡張距離が得られるので、それにより考える関数空間上に位相を定義することは可能である。.

新しい!!: 数列空間と一様ノルム · 続きを見る »

弱位相

数学における弱位相(じゃくいそう、)は、の代わりとなる語である。この語は、連続双対に関する(ノルム線型空間のような)線型位相空間の始位相を表すために最もよく用いられる。この記事ではこの場合を扱う。これは函数解析学の概念の一つである。 線型位相空間の部分集合が弱閉(あるいは弱コンパクト)であるとは、それらが弱位相に関して閉(あるいはコンパクト)であることをいう。同様に、函数が弱位相に関して連続(あるいは微分可能、解析的など)の場合、しばしば弱連続(あるいは弱微分可能、弱解析的など)と呼ばれる。.

新しい!!: 数列空間と弱位相 · 続きを見る »

強位相

数学における強位相(きょういそう、)とは、他の「元来の」位相よりも強い位相である。通常、文脈によって次のような異なる位相のことを指す。.

新しい!!: 数列空間と強位相 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 数列空間と位相空間 · 続きを見る »

作用素ノルム

数学の分野における作用素ノルム(さようそノルム、Operator norm)とは、線形作用素の大きさを測る際に用いられるある種の指標のことを言う。より正式には、与えられた二つのノルム線形空間の間の有界線形作用素からなる空間上に定義されるノルムのことを言う。.

新しい!!: 数列空間と作用素ノルム · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: 数列空間とノルム · 続きを見る »

バナッハ空間

数学におけるバナッハ空間(バナッハくうかん、Banach space; バナハ空間)は、完備なノルム空間、即ちノルム付けられた線型空間であって、そのノルムが定める距離構造が完備であるものを言う。 解析学に現れる多くの無限次元函数空間、例えば連続函数の空間(コンパクトハウスドルフ空間上の連続写像の空間)、 ''L''''p''-空間と呼ばれるルベーグ可積分函数の空間、ハーディ空間と呼ばれる正則函数の空間などはバナッハ空間を成す。これらはもっとも広く用いられる位相線型空間であり、これらの位相はノルムから規定されるものになっている。 バナッハ空間の名称は、この概念をハーンとヘリーらと共に1920-1922年に導入したポーランドの数学者ステファン・バナフに因む。.

新しい!!: 数列空間とバナッハ空間 · 続きを見る »

ヘルダーの不等式

解析学におけるヘルダーの不等式(- ふとうしき, Hölder's inequality)とは、数列や可測関数のあいだに成り立つもっとも基本的な不等式の一つであり、 測度空間上の''Lp''空間の構造の解析などにしばしば用いられる。オットー・ヘルダーにちなんでこの名前がついている。歴史的には1888年にレオナルド・J・ロジャーズによって、さらにその翌年にヘルダーによって独立に発見された。.

新しい!!: 数列空間とヘルダーの不等式 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 数列空間とヒルベルト空間 · 続きを見る »

フレシェ空間

数学の関数解析学周辺分野におけるフレシェ空間(フレシェくうかん、Fréchet spaces)は、モーリス・フレシェに名を因む、位相空間の一種である。フレシェ空間は(ノルムの導く距離に関して完備なノルム付き線型空間である)バナッハ空間を一般化するもので、平行移動不変距離関数に関して完備な局所凸空間を言う。バナッハ空間との違いは、その距離がノルムから生じるものでなくともよいことである。 フレシェ空間の位相構造は、バナッハ空間のと比べてノルムがない分だけより複雑なものではあるけれども、ハーン・バナッハの定理や開写像定理、バナッハ・シュタインハウスの定理などの関数解析学における重要な結果の多くが、フレシェ空間においてもやはり成り立つ。 無限回微分可能関数の成す空間などは、フレシェ空間の典型例である。.

新しい!!: 数列空間とフレシェ空間 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 数列空間とベクトル空間 · 続きを見る »

列 (数学)

数学において列(れつ、sequence)とは、粗く言えば、対象あるいは事象からなる集まりを「順序だてて並べる」ことで、例えば「A,B,C」は3つのものからなる列である。狭義にはこの例のように一列に並べるものを列と呼ぶが、広義にはそうでない場合(すなわち半順序に並べる場合)も列という場合がある(例:有向点列)。集合との違いは順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列を「○○列」という言い方をするが、異なる種類のものを並べた列も許容されている。 列の構成要素は、列の要素あるいは項(こう、term)と呼ばれ、例えば「A,B,C」には3つの項がある。項の個数をその列の項数あるいは長さ (length, size) という。項数が有限である列を有限列(ゆうげんれつ、finite sequence)と、そうでないものを無限列(むげんれつ、infinite sequence)と呼ぶ。(例えば正の偶数全体の成す列 (2, 4, 6,...) )。.

新しい!!: 数列空間と列 (数学) · 続きを見る »

コンパクト作用素

数学の一分野函数解析学においてコンパクト作用素(コンパクトさようそ、compact operator)とは、バナッハ空間 X から別のバナッハ空間 Y への線型作用素 L であって、X の任意の有界集合を Y の相対コンパクト集合へ写すようなもののことを言う。このような作用素は有界作用素、つまり連続写像でなければならない。 有界作用素 L で階数が有限なものは全てコンパクト作用素である。実際、無限次元空間上のコンパクト作用素のクラスは階数有限な作用素のクラスの自然な一般化である。X.

新しい!!: 数列空間とコンパクト作用素 · 続きを見る »

商空間

商空間(しょうくうかん).

新しい!!: 数列空間と商空間 · 続きを見る »

回帰的空間

数学の関数解析学における回帰的空間(かいきてきくうかん、)とは、その双対空間の双対が元の空間と一致するようなバナッハ空間(より一般的には、局所凸位相ベクトル空間)のことである。回帰的なバナッハ空間はしばしばそれらの幾何学的な性質によって特徴付けられる。.

新しい!!: 数列空間と回帰的空間 · 続きを見る »

Ba空間

数学において、集合代数 に対する ba-空間(baくうかん、) とは、 上のすべての有界かつ有限加法的な符号付測度からなるバナッハ空間である。ノルムは次のように で与えられる。 がσ-代数となるとき、 の部分集合として可算加法的測度からなる空間 が定義される 。ここで記号 ba は「有界加法的(bounded additive)」にちなみ、ca は「可算加法的(countably additive)」にちなむ。 が位相空間で、 が におけるボレル集合全体の成す -代数であるとき、 の部分空間として、 上のすべての正則ボレル測度からなる空間 を考えることができる 。.

新しい!!: 数列空間とBa空間 · 続きを見る »

稠密集合

数学の位相空間論周辺分野において、位相空間 X の部分集合 A が X において稠密(ちゅうみつ、dense)であるとは、X の各点 x が、A の元であるか、さもなくば A の集積点であるときにいう。イメージで言えば、X の各点が A の中かさもなくば A の元の「どれほどでも近く」にあるということを表している。例えば、任意の実数は、有理数であるか、さもなくばどれほどでも近い有理数をとることができる(ディオファントス近似も参照)。.

新しい!!: 数列空間と稠密集合 · 続きを見る »

等長写像

数学、とくに幾何学において等長写像(とうちょうしゃぞう)または等距離写像(とうきょりしゃぞう)とは、"長さ" を変えない(距離を保つ、distance preserving)写像のことである。全単射であるものに限って等長写像 (isometry) という場合もある。.

新しい!!: 数列空間と等長写像 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 数列空間と線型位相空間 · 続きを見る »

線型部分空間

数学、とくに線型代数学において、線型部分空間(せんけいぶぶんくうかん、linear subspace)または部分ベクトル空間(ぶぶんベクトルくうかん、vector subspace)とは、ベクトル空間の部分集合で、それ自身が元の空間の演算により線型空間になっているもののことである。 ベクトル空間のある部分集合が、それ自身ある演算に関してベクトル空間の構造を持っていたとしても、その演算がもとの空間の演算でないならば部分線型空間とは呼ばない、ということに注意されたい。また、文脈により紛れの恐れのない場合には、線型部分空間のことを単に部分空間と呼ぶことがある。.

新しい!!: 数列空間と線型部分空間 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: 数列空間と絶対値 · 続きを見る »

点ごと

数学において,点ごとということばは,ある性質がある関数 の各値 を考えることによって定義されることを指し示すために用いられる.点ごとの概念の重要なクラスは点ごとの演算である,つまり,関数に演算を関数の値に定義域の各点に対して別々に適用することによって定義される演算である.重要なもまた点ごとに定義できる..

新しい!!: 数列空間と点ごと · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: 数列空間と複素数 · 続きを見る »

記号の濫用

数学において、記号の濫用(きごうのらんよう、abuse of notation, abus de notation)とは、形式的には正しくないが表記を簡単にしたり正しい直観を示唆するような表記を(間違いのもととなったり混乱を引き起こすようなことがなさそうなときに)用いることである。記号の濫用は記号の誤用とは異なる。誤用は避けなければならない。 関連する概念に用語の濫用(abuse of language, abuse of terminology, abus de langage)がある。これは記号ではなく用語が(形式的には)誤って使われることを指す。記号以外の濫用とほぼ同義である。例えば群 の表現とは正確には から GL(''V'') (ただし はベクトル空間)への群準同型のことであるが、よく表現空間 のことを「 の表現」という。用語の濫用は異なるが自然に同型な対象を同一視する際によく行われる。例えば、定数関数とその値や、直交座標系の入った 次元ユークリッド空間と である。.

新しい!!: 数列空間と記号の濫用 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: 数列空間と距離函数 · 続きを見る »

関数の台

数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

新しい!!: 数列空間と関数の台 · 続きを見る »

関数空間

関数空間(かんすうくうかん、、函数空間)とは、特定の空間上で、ある性質を持つ関数の全体を幾何学的な考察の対象として捉えたものである。.

新しい!!: 数列空間と関数空間 · 続きを見る »

関数解析学

関数解析学(かんすうかいせきがく、functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。.

新しい!!: 数列空間と関数解析学 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 数列空間と自然数 · 続きを見る »

連続的双対空間

関数解析学における位相線型空間の連続的双対空間(れんぞくてきそうついくうかん、continuous dual space)、位相的双対空間(いそうてきそうついくうかん、topological dual space)あるいは単に双対空間(そうついくうかん、dual space)は、位相線型空間を扱う際に典型的に注目される連続な線型汎関数全体の成す空間として生じる。これは位相線型空間 V の代数的双対空間 V∗ の線型部分空間で V′ で表される。 ユークリッド空間のような任意の「有限次元」ノルム空間もしくは位相線型空間に対しては、連続的双対は代数的双対に一致する。しかし任意の無限次元ノルム空間において不連続線型汎関数の例に見るように両者は一致しない。にも拘らず、位相線型空間論において不連続写像を考える必要はそれほどないので、わざわざ「連続的双対」や「位相的双対」とは言わずに単に「双対空間」と呼ぶことが多い。.

新しい!!: 数列空間と連続的双対空間 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: 数列空間とLp空間 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 数列空間と極限 · 続きを見る »

有向点族

有向点族(ゆうこうてんぞく、directed family of points)とは、点列を一般化した概念で、ムーア (Eliakim Hastings Moore) とスミス (H. L. Smith) により1922年に定義された。有向点族はネット (net)、有向点列、 Moore-Smith 列などとも呼ばれる。 点列との違いは添え字にあり、点列が自然数という可算な全順序集合の元で添え字付けられるのに対し、有向点族はより一般的な順序集合である(可算または非可算な)有向集合の元で添え字付けられている。 有向点族の概念の利点として以下の2つがある:.

新しい!!: 数列空間と有向点族 · 続きを見る »

有界函数

数学の分野において、ある集合 X 上で定義される実数あるいは複素数値の函数 f が有界函数(ゆうかいかんすう、)であるとは、その値からなる集合が有界集合であることを言う。言い換えると、X 内のすべての x に対して が成り立つような、x に依らない実数 M が存在することを言う。 しばしば、X 内のすべての x に対して f(x)\le A が成立するとき、その函数は上界 A によって上から抑えられる()と言い、そのような A が存在するときその函数は上に有界であるという。それと対照的に、X 内のすべての x に対して f(x)\ge B が成立するとき、その函数は下界 B によって下から抑えられる()と言い、そのような B が存在するときその函数は下に有界であるという。 (しばしば、函数・写像・作用素などが同意語として扱われることもあるけれども)この概念は、有界作用素のそれと混同しないように注意するべきである。 有界函数の概念の重要で特別な場合として、X を自然数全体の集合 N と取って有界数列()が考えられる。すなわち、ある数列 (a0, a1, a2,...) が有界であるとは、ある実数 M が存在して、すべての自然数 n に対して が成立することを言う。有界数列すべてからなる集合(にベクトル空間の構造を入れたもの)は数列空間を成す。 この定義は、距離空間 Y に値を取る函数へと拡張することが出来る。ある集合 X 上で定義される函数 f が有界であるとは、Y 内のある a に対して適当な実数 M を取れば、距離函数 d で測った a と f(x) との距離が M 以下にできること、すなわち が X 内のすべての x に対して成立することを言う。この場合、a を他の任意の点に取り換えても、三角不等式により、同様な性質を持つ M を取ることができる。.

新しい!!: 数列空間と有界函数 · 続きを見る »

数え上げ測度

数学、とくに解析学において、数え上げ測度(かぞえあげそくど、counting measure; 計数測度)とは、集合の元の個数を数えるという方法でその "大きさ"(あるいは "容積")を測る、ルベーグ積分における測度の一種である。.

新しい!!: 数列空間と数え上げ測度 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 数列空間と数学 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 数列空間と数列 · 続きを見る »

数列の極限

正整数 が大きくなるにつれて、値 は にいくらでも近くなる。「数列 の極限は である」という。 数学において、数列や点列の極限(limit of a sequence)は数列や点列の項が「近づく」値であるCourant (1961), p. 29.

新しい!!: 数列空間と数列の極限 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »