ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

反転分布

索引 反転分布

物理、とくに統計力学において、低いエネルギー状態よりも励起状態の方が占有率が高いような系が存在するとき、系のエネルギー分布が反転分布(はんてんぶんぷ、Population inversion)であるという。また反転分布は(便宜上)負温度とも呼ばれる。この様な概念は、レーザー科学において基礎的で重要な役割を演じている。レーザーを動かすうえで、欠かすことのできない過程が反転分布によって、生じているからである。 通常の電子の分布はフェルミ・ディラック分布に従い、より下の準位の方が電子の数が多い状態である。しかし、特殊な条件を満たしてやることによりこの「下のほうが電子が多い」状態とは異なる状態にすることができる。フェルミ・ディラック分布における式での温度項の符号をマイナスにした状態とも考えることもできるので負温度と呼ばれる。ただし、反転分布にある物質は熱平衡状態にはないので、これは熱力学温度とは異る概念である。 このような、高い準位に電子が多い状態に光が入射すると誘導放出により入射光を増幅でき、レーザーが発振される。 2準位系の励起では、下の電子が上に励起されても誘導放出により高い準位に低い準位よりも多くの電子を入れることは不可能である。 3準位系になって初めて、上の準位のほうが多くなれる条件を作り出せる。 4準位系になるとさらに反転分布を作りやすい状態になりうる。.

17 関係: 励起状態レーザーレーザー科学プランク定数フェルミ分布関数ケルビン統計力学熱力学的平衡熱力学温度物理学誘導放出負温度電子準位2状態系3準位レーザー4準位レーザー

励起状態

励起状態(れいきじょうたい、excited state)とは、量子力学において系のハミルトニアンの固有状態のうち、基底状態でない状態のこと。.

新しい!!: 反転分布と励起状態 · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: 反転分布とレーザー · 続きを見る »

レーザー科学

レーザー科学(レーザーかがく)または レーザー物理(レーザーぶつり)は光学の一分野であり、レーザーに関する理論と現象論を扱う学問である。 レーザー科学は量子エレクトロニクスと、特に光共振器を対象としており、レーザー媒体に於ける反転分布に関する物理学や、レーザーにおける電磁場の時間発展に関する理論的、原理的な背景を与えている。 また、レーザービームの伝播、特にガウシアンビームに関する物理学およびレーザーの応用も扱う。非線形光学、量子光学等にも関連する。.

新しい!!: 反転分布とレーザー科学 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: 反転分布とプランク定数 · 続きを見る »

フェルミ分布関数

フェルミ分布関数(フェルミぶんぷかんすう、)とは、相互作用のないフェルミ粒子の系において、一つのエネルギー準位にある粒子の数(占有数)の分布を与える理論式である東京大学 知の構造化センター「物性物理学入門 (進化する教科書 Wiki)」。フェルミ・ディラック分布とも呼ばれる。.

新しい!!: 反転分布とフェルミ分布関数 · 続きを見る »

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

新しい!!: 反転分布とケルビン · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 反転分布と統計力学 · 続きを見る »

熱力学的平衡

熱力学的平衡(ねつりきがくてきへいこう、)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。逆に言えば、系の状態が変化するときは、多少なりとも熱力学的平衡からずれていることを意味する。極限として、限りなく熱力学的平衡に近い状態を保って行われる状態変化は、準静的変化とよばれる。また、系が熱力学的平衡であるとき、あるいは局所的に平衡とみなせる部分について、系の温度や圧力などの示強性状態量を定義することができる。 熱力学的に非平衡 (non-equilibrium) であるとは、上記の熱的、力学的、化学的平衡のいずれかが満たされていない状態であり、系に物質またはエネルギーの正味の流れ、あるいは相転移などが生じる。またこのような非平衡状態は不安定であるため別の状態へ転移するが、転移速度が極めて遅いために不安定な状態が維持される場合、この状態を準安定状態という。.

新しい!!: 反転分布と熱力学的平衡 · 続きを見る »

熱力学温度

熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

新しい!!: 反転分布と熱力学温度 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 反転分布と物理学 · 続きを見る »

誘導放出

誘導放出(ゆうどうほうしゅつ、stimulated emission)とは、励起状態の電子(あるいは分子)が、外部から加えた電磁波(光子)によってより低いエネルギー準位にうつり、その分のエネルギーを電磁波として放出する現象である。このとき放出される光子は、外部から入射した光子と同じ位相、周波数、偏光を持ち、同じ方向に進む。 誘導放出を利用することで、光を位相や波長を揃えて(コヒーレントに)増幅することができ、レーザーの発振などに応用されている。.

新しい!!: 反転分布と誘導放出 · 続きを見る »

負温度

負温度(ふおんど)とは、統計力学においてとなっていること、またその際の温度を指す。 直観とは逆にこれは極めて冷たいことを示すのではなく、いかなる正の絶対温度よりも熱いことを示している。何故なら反転分布のエネルギー係数は −1/Temperature となるからである。この文脈では -0度は他のどの負温度よりも最も高い温度である。.

新しい!!: 反転分布と負温度 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 反転分布と電子 · 続きを見る »

準位

準位(じゅんい)とは、量子力学の用語で、あるエネルギーをもつ量子状態のこと。エネルギー準位。.

新しい!!: 反転分布と準位 · 続きを見る »

2状態系

量子力学において、2状態系(2じょうたいけい、two-state system)とは、2つの独立な量子状態から構成される量子系である。自明ではない量子系としては最も簡単なものであるが、量子力学の特徴的な性質を備える。コインの表裏のような古典対応物と異なり、2状態系の量子状態を記述する状態ベクトルは、2つの独立な状態の重ね合わせの比率と位相差が異なる無限に多くの状態を取り得る。こうした性質は量子情報理論での量子ビットの基礎をなす。2状態系として記述される系は電子や原子核のスピン の系、光子の偏光状態、共鳴波長の光に応答する原子の2準位系、ニュートリノ振動、アンモニア分子の反転モードなどの豊富な物理現象を含む。また、核磁気共鳴やアンモニアメーザーの理論的な基礎付けを与えている。J. J. Sakurai の著書 "Modern quantum mechanics" ではノーベル賞受賞者で2状態系の解析に携わった者として、7人の名を挙げている。.

新しい!!: 反転分布と2状態系 · 続きを見る »

3準位レーザー

3準位レーザー(さんじゅんいレーザー)とは3つのエネルギー準位の占有率を反転分布とし、コヒーレントな光を得るレーザーの総称である。 3準位間の遷移における反転分布の形成の仕方は以下のようになる。まず基底状態にある原子を励起装置により励起状態へとポンピングする。次に励起状態の原子はごく短時間の間に準安定状態に落ち着く。これを繰り返し、非平衡定常状態とすることで安定なレーザーの発振を実現する。準安定状態の基底状態への緩和時間が長い系ほど準安定状態にある原子と基底状態にある原子の間で反転分布が起こりやすくなる。 しかし、基底状態の占有率は通常は非常に高いため、準安定状態の占有率をそれを超えさせて反転分布を実現するためには強力な励起装置が必要となる。そのため4準位レーザーの方が効率よく反転分布を形成することができる。3準位レーザーの例として、ルビーレーザーが挙げられる。 Category:レーザー Category:光学.

新しい!!: 反転分布と3準位レーザー · 続きを見る »

4準位レーザー

4準位レーザー (4じゅんいレーザー) とは基底状態と3つの励起状態を用いて二準位間に反転分布を形成し、コヒーレントな光を得るレーザーの総称である。 4準位間の遷移における反転分布の形成の仕方は以下のようになる。 まず基底状態E_0にある原子を励起装置(ポンプ光)により励起状態E_3に励起する。 励起状態の原子はごく短時間の間に準安定状態E_2に緩和し、このとき原子は比較的長い時間準安定状態に留まるとすると、準安定状態E_2にある原子と準安定状態E_1にある原子との間で反転分布が起こり、レーザー発振が得られる。 3準位レーザーではレーザー発振時の下準位が基底状態にあるため反転分布を起こすには強力な励起を必要としたが、4準位レーザーでは励起状態間E_2とE_1の間で発振する。そのため4準位レーザーの方が効率よく反転分布を形成することができる。4準位レーザーの例としてはNd:YAGレーザーがあり、右図はNd:YAGレーザーの発振における準位図である。 Category:レーザー Category:光学.

新しい!!: 反転分布と4準位レーザー · 続きを見る »

ここにリダイレクトされます:

逆転分布

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »