ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

反転分布と熱力学温度

ショートカット: 違い類似点ジャカード類似性係数参考文献

反転分布と熱力学温度の違い

反転分布 vs. 熱力学温度

物理、とくに統計力学において、低いエネルギー状態よりも励起状態の方が占有率が高いような系が存在するとき、系のエネルギー分布が反転分布(はんてんぶんぷ、Population inversion)であるという。また反転分布は(便宜上)負温度とも呼ばれる。この様な概念は、レーザー科学において基礎的で重要な役割を演じている。レーザーを動かすうえで、欠かすことのできない過程が反転分布によって、生じているからである。 通常の電子の分布はフェルミ・ディラック分布に従い、より下の準位の方が電子の数が多い状態である。しかし、特殊な条件を満たしてやることによりこの「下のほうが電子が多い」状態とは異なる状態にすることができる。フェルミ・ディラック分布における式での温度項の符号をマイナスにした状態とも考えることもできるので負温度と呼ばれる。ただし、反転分布にある物質は熱平衡状態にはないので、これは熱力学温度とは異る概念である。 このような、高い準位に電子が多い状態に光が入射すると誘導放出により入射光を増幅でき、レーザーが発振される。 2準位系の励起では、下の電子が上に励起されても誘導放出により高い準位に低い準位よりも多くの電子を入れることは不可能である。 3準位系になって初めて、上の準位のほうが多くなれる条件を作り出せる。 4準位系になるとさらに反転分布を作りやすい状態になりうる。. 熱力学温度(ねつりきがくおんど、)熱力学的温度(ねつりきがくてきおんど)とも呼ばれる。は、熱力学に基づいて定義される温度である。 国際量体系 (ISQ) における基本量の一つとして位置付けられ、次元の記号としてサンセリフローマン体の が用いられる。また、国際単位系 (SI) における単位はケルビン(記号: K)が用いられる。熱力学や統計力学に関する文献やそれらの応用に関する文献では、熱力学温度の意味で温度 という言葉を使うことが多い。 熱力学温度は平衡熱力学における基本的要請を満たすように定義される示強変数であり、そのような温度は一つに限らない。 熱力学温度が持つ基本的な性質の一つとして普遍性がある。具体的な物質の熱膨張などを基準として定められる温度は、選んだ物質に固有の性質をその定義に含んでしまい、特殊な状況を除いて温度の取り扱いが煩雑になる。熱力学温度はシャルルの法則や熱力学第二法則のような物質固有の性質に依存しない法則に基づいて定められるため、物質の選択にまつわる困難を避けることができる。 熱力学温度が持つもう一つの基本的な性質として、下限の存在が挙げられる。熱力学温度の下限は実現可能な熱力学的平衡状態熱力学や統計力学に関する文献では単に平衡状態と呼ばれることが多い。を決定する。この熱力学温度の下限は絶対零度と呼ばれる。 統計力学の分野においては逆温度が定義されしばしば熱力学温度に代わって用いられる。逆温度 は(理想気体温度の意味での)熱力学温度 に反比例する ことが知られ( はボルツマン定数)、このことが の名前の由来となっている。 また統計力学では「絶対零度を下回る」温度として負温度が導入されるが、負温度は熱力学や平衡統計力学の意味での温度とは異なる概念である。熱力学で用いられる通常の温度は平衡状態の系を特徴づける物理量だが、負温度は反転分布の実現するような非平衡系や系のエネルギーに上限が存在するような特殊な系を特徴づける量である。負温度はある種の非平衡系に対してカノニカル分布を拡張した際に、この分布に対する逆温度の逆数(をボルツマン定数で割ったもの)として定義され、負の値をとる。すなわち、負の逆温度 に対し負温度 は という関係が成り立つように定められる。この関係は通常の(正の)温度と逆温度の関係をそのまま非平衡系に対して適用したものとなっている。しかしながらその元となる逆温度と温度の対応関係は、統計力学で定義される諸々の熱力学ポテンシャルが熱力学で定義されたものと(漸近的に)一致するという要請から導かれるものであり、負温度が実現する系において同様の関係が成り立つと考える必然性はない。 熱力学温度はしばしば絶対温度(ぜったいおんど、absolute temperature)とも呼ばれる。多くの場合、熱力学温度と絶対温度は同義であるが、「絶対温度」という言葉の用法はまちまちであり「カルノーの定理や理想気体の状態方程式から定義できる自然な温度」を指すこともあれば、「温度単位としてケルビンを選んだ場合の温度」ないし「絶対零度を基準点とする温度」のようなより限定された意味で用いられることもある。 気体分子運動論によれば分子が持つ運動エネルギーの期待値は絶対零度において 0 となる。このとき、分子の運動は完全に停止していると考えられる。しかしながら、極低温の環境において古典力学に基づく運動論は完全に破綻するため、そのような古典的な描像は意味を持たない。.

反転分布と熱力学温度間の類似点

反転分布と熱力学温度は(ユニオンペディアに)共通で4ものを持っています: ケルビン統計力学熱力学的平衡負温度

ケルビン

ルビン(kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。 ケルビンの名は、イギリスの物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるから取られている。.

ケルビンと反転分布 · ケルビンと熱力学温度 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

反転分布と統計力学 · 熱力学温度と統計力学 · 続きを見る »

熱力学的平衡

熱力学的平衡(ねつりきがくてきへいこう、)は、熱力学的系が熱的、力学的、化学的に平衡であることをいう。このような状態では、物質やエネルギー(熱)の正味の流れや相転移(氷から水への変化など)も含めて、熱力学的(巨視的)状態量は変化しない。逆に言えば、系の状態が変化するときは、多少なりとも熱力学的平衡からずれていることを意味する。極限として、限りなく熱力学的平衡に近い状態を保って行われる状態変化は、準静的変化とよばれる。また、系が熱力学的平衡であるとき、あるいは局所的に平衡とみなせる部分について、系の温度や圧力などの示強性状態量を定義することができる。 熱力学的に非平衡 (non-equilibrium) であるとは、上記の熱的、力学的、化学的平衡のいずれかが満たされていない状態であり、系に物質またはエネルギーの正味の流れ、あるいは相転移などが生じる。またこのような非平衡状態は不安定であるため別の状態へ転移するが、転移速度が極めて遅いために不安定な状態が維持される場合、この状態を準安定状態という。.

反転分布と熱力学的平衡 · 熱力学温度と熱力学的平衡 · 続きを見る »

負温度

負温度(ふおんど)とは、統計力学においてとなっていること、またその際の温度を指す。 直観とは逆にこれは極めて冷たいことを示すのではなく、いかなる正の絶対温度よりも熱いことを示している。何故なら反転分布のエネルギー係数は −1/Temperature となるからである。この文脈では -0度は他のどの負温度よりも最も高い温度である。.

反転分布と負温度 · 熱力学温度と負温度 · 続きを見る »

上記のリストは以下の質問に答えます

反転分布と熱力学温度の間の比較

熱力学温度が52を有している反転分布は、17の関係を有しています。 彼らは一般的な4で持っているように、ジャカード指数は5.80%です = 4 / (17 + 52)。

参考文献

この記事では、反転分布と熱力学温度との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »