ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

伝熱

索引 伝熱

伝熱(でんねつ、)とは、熱エネルギーが、空間のある場所から別の場所に移動する現象。熱移動ともいう。伝熱は、熱の移動現象を扱う工学であり、熱工学の一分野である。.

42 関係: 培風館吸光学術用語集対流工学伝熱工学位置形態係数ペルティエ効果ポンプボルツマン定数トムソン効果プランクの法則プランク定数ファンニュートンの冷却の法則キルヒホッフの法則シュテファン=ボルツマンの法則ゼーベック効果現象移動現象論積分法立体角熱工学熱伝導熱伝導率熱量熱流束熱放射相変化相転移黒体蒸発電場電磁波温度温度勾配浮力文部省日本物理学会放射率

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 伝熱と培風館 · 続きを見る »

吸光

吸光(きゅうこう、英語:absorption)とは、物質が光を吸収する現象のことである。 量子論によると、物質の固有状態(電子の軌道や、分子の振動・回転などの状態)は連続でなく、飛び飛びの値をとる。この状態間のエネルギー差と等しい波長の光が物質に照射されると、そのエネルギーを吸収して状態の遷移が起こり、物質は励起される。(ただし、実際にはスピン禁制など、他の制限がつくため、エネルギー値のみで決まるわけではない。) 実際には、物質は光エネルギーを吸収したままなのではなく、すぐに励起状態から基底状態に戻り、この際に吸収したエネルギーを放出する。しかし、エネルギーの一部は無輻射過程を経るため、吸収した光と完全に同じ波長・強度の光として放出されるわけではない。したがって、光の一部は物質に吸収され続けるように観測される。 通常の場合、紫外・可視・近赤外領域の波長では電子遷移が生じ、赤外領域では分子の振動遷移あるいは回転遷移が生じる。 また、物質に白色光を照射し、その一部が吸収された場合、その物質は吸収された光の補色として観察される。.

新しい!!: 伝熱と吸光 · 続きを見る »

学術用語集

学術用語集(がくじゅつようごしゅう)とは、.

新しい!!: 伝熱と学術用語集 · 続きを見る »

対流

対流(たいりゅう、convection)とは、流体において温度や表面張力などが原因により不均質性が生ずるため、その内部で重力によって引き起こされる流動が生ずる現象である。 地球の大気においては、大気の鉛直方向の運動は高度 0 キロメートルから約 11 キロメートルの層に限られ、この領域を対流圏と呼ぶ。また地球や惑星の内部では、対流により内部の熱源から地表面への熱輸送が生じており、地表面の変動を引き起こす原因となっている。 近年、計算機の性能が向上し、流体の運動方程式(ナビエ-ストークスの式)を高精度に計算することが可能となったため、コンピュータを用いたシミュレーションによる対流現象の研究が盛んに行われており、工学的な技術としても重要な分野である。また惑星内部の対流など、実験・観測が不可能な領域における流体の挙動を理論的に解明する研究も行われている。.

新しい!!: 伝熱と対流 · 続きを見る »

工学

工学(こうがく、engineering)とは、.

新しい!!: 伝熱と工学 · 続きを見る »

伝熱工学

伝熱工学(でんねつこうがく)とは熱の伝わりに関する学問である。 伝熱の仕組みは3種類に分類される。.

新しい!!: 伝熱と伝熱工学 · 続きを見る »

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 伝熱と位置 · 続きを見る »

形態係数

形態係数(けいたいけいすう、view factor, radiation shape factor, angle factor)とは、熱放射の計算において、熱をやり取りする2つの面の間の幾何学的位置関係を表す無次元量である。空間に存在する温度T1 の面A1 が熱を放射するとき、そのうち別の面A2へ入射する熱量\dot_ は形態係数F1→2 を用いて次式で表される。 ただし、σはステファン・ボルツマン定数である。.

新しい!!: 伝熱と形態係数 · 続きを見る »

ペルティエ効果

ペルティエ効果文部省 (1990) 学術用語集 物理学編。(ペルティエこうか、)は、異なる金属を接合し電圧をかけ、電流を流すと、接合点で熱の吸収・放出が起こる効果。ゼーベック効果の逆、電圧から温度差を作り出す現象である。トムソン効果とともに熱電効果のひとつである。ペルチエ効果、ペルチェ効果と表記することもある。.

新しい!!: 伝熱とペルティエ効果 · 続きを見る »

ポンプ

井戸ポンプ(手押しポンプ) ポンプ(pomp)は圧力の作用によって液体や気体を吸い上げたり送ったりするための機械 特許庁。機械的なエネルギーで圧力差を発生させ液体や気体の運動エネルギーに変換させる流体機械である。喞筒(そくとう)ともいう。 動物の心臓も一種のポンプである。また、機械的なポンプのようにエネルギーの蓄積や移送を行う目的の仕組みに「ポンプ」の語を当てることがある(ヒートポンプなど)。 動作原理により、非容積型、容積型、特殊型に分類される。.

新しい!!: 伝熱とポンプ · 続きを見る »

ボルツマン定数

ボルツマン定数(ボルツマンていすう、Boltzmann constant)は、統計力学において、状態数とエントロピーを関係付ける物理定数である。統計力学の分野において重要な貢献をしたオーストリアの物理学者ルートヴィッヒ・ボルツマンにちなんで名付けられた。通常は記号 が用いられる。特にの頭文字を添えて で表されることもある。 ボルツマンの原理において、エントロピーは定まったエネルギー(及び物質量や体積などの状態量)の下で取りうる状態の数 の対数に比例する。これを と書いたときの比例係数 がボルツマン定数である。従って、ボルツマン定数はエントロピーの次元を持ち、熱力学温度をエネルギーに関係付ける定数として位置付けられる。国際単位系(SI)における単位はジュール毎ケルビン(記号: J K)が用いられる。.

新しい!!: 伝熱とボルツマン定数 · 続きを見る »

トムソン効果

トムソン効果(トムソンこうか、)とは、イギリスの物理学者ウィリアム・トムソンが発見した、一つの金属上で温度の差がある2点間に電流を流すと、熱を吸収したり発生したりする効果。熱電効果のひとつ。 ジュール=トムソン効果とは別のものである。.

新しい!!: 伝熱とトムソン効果 · 続きを見る »

プランクの法則

プランクの法則(プランクのほうそく、Planck's law)とは物理学における黒体から輻射(放射)される電磁波の分光放射輝度、もしくはエネルギー密度の波長分布に関する公式。プランクの公式とも呼ばれる。ある温度 における黒体からの電磁輻射の分光放射輝度を全波長領域において正しく説明することができる。1900年、ドイツの物理学者マックス・プランクによって導かれた。プランクはこの法則の導出を考える中で、輻射場の振動子のエネルギーが、あるエネルギー素量(現在ではエネルギー量子と呼ばれている) の整数倍になっていると仮定した。このエネルギーの量子仮説(量子化)はその後の量子力学の幕開けに大きな影響を与えている。.

新しい!!: 伝熱とプランクの法則 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: 伝熱とプランク定数 · 続きを見る »

ファン

ファン(fan)は、特定の人物や事象に対する支持者や愛好者のこと。「熱狂的な」を意味するファナティック(fanatic)の略。対義語で、特定の人物や事象に対する嫌悪者は「ヘイター」(hater)という。.

新しい!!: 伝熱とファン · 続きを見る »

ニュートンの冷却の法則

ニュートンの冷却の法則(ニュートンのれいきゃくのほうそく、Newton's law of cooling)は、液体や気体などの媒質中におかれた高温の固体が媒質によって冷却される様子を表した法則である。この法則は経験的に導かれた法則なので媒質と固体との温度差が極端に大きい場合には成り立たないこともあるが、日常的な範囲であれば近似的に成り立つ。 この法則によると媒質中の固体から媒質に熱が伝わる速度は、固体の表面積及び固体と媒質の温度差に比例する。すなわち固体の持つ熱量Q 、時刻t 、固体の表面積S 、固体の温度T 、媒質の温度Tm の間には次の関係が成り立つ。 ここで比例定数αは固体境界面形状、媒質の性質および流れ方などによって決まる定数で、熱伝達率(heat transfer coefficient)または境膜係数(film coefficient)という。.

新しい!!: 伝熱とニュートンの冷却の法則 · 続きを見る »

キルヒホッフの法則

ルヒホッフの法則(キルヒホッフのほうそく).

新しい!!: 伝熱とキルヒホッフの法則 · 続きを見る »

シュテファン=ボルツマンの法則

ュテファン.

新しい!!: 伝熱とシュテファン=ボルツマンの法則 · 続きを見る »

ゼーベック効果

ーベック効果(ゼーベックこうか、Seebeck effect)は物体の温度差が電圧に直接変換される現象で、熱電効果の一種。逆に電圧を温度差に変換するペルティエ効果もある。類似の現象としてトムソン効果やジュール熱がある。ゼーベック効果を利用して温度を測定することができる(→熱電対)。ゼーベック効果、ペルティエ効果、トムソン効果は可逆であるが、ジュール熱はそうではない。 ゼーベック効果は、1821年にエストニアの物理学者トーマス・ゼーベックによって偶然発見された。ゼーベックは金属棒の内部に温度勾配があるとき、両端間に電圧が発生することに気づいた。 また、2 種類の金属からなるループの接点に温度差を設けると、近くに置いた方位磁針の針が振れることも発見した。これは2種類の金属が温度差に対して異なる反応をしたため、ループに電流が流れ、磁場を発生させたためである。.

新しい!!: 伝熱とゼーベック効果 · 続きを見る »

現象

象(げんしょう φαινόμενoν- phainomenon, pl.

新しい!!: 伝熱と現象 · 続きを見る »

移動現象論

移動現象論(いどうげんしょうろん、transport phenomena)は輸送現象論、移動速度論とも呼ばれ、物質(成分)、熱、運動量などの物理量が移動する現象を扱う工学の一分野である。.

新しい!!: 伝熱と移動現象論 · 続きを見る »

積分法

積分法(せきぶんほう、integral calculus)は、微分法と共に微分積分学で対を成す主要な分野である。 実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f の定積分 (独: bestimmte Integral, 英: definite integral, 仏: intégrale définie) は、略式的に言えば f のグラフと x-軸、および x.

新しい!!: 伝熱と積分法 · 続きを見る »

立体角

立体角(りったいかく、solid angle)とは、二次元における角(平面角)の概念を三次元に拡張したものである。 平面上における角とは、平面上の同一の点(角の頂点)から出る二つの半直線によって区切られた部分のことをいい、この2半直線の開き具合を角度という。角度は、角の頂点を中心とする半径 1の円から、2半直線が切り取った円弧の長さで表すことができる。 これに対し、空間上における立体角とは、空間上の同一の点(角の頂点)から出る半直線が動いてつくる錐面によって区切られた部分のことをいい、この錐面の開き具合を角度という。角度は、角の頂点を中心とする半径 1の球から錐面が切り取った面積の大きさで表すことができる。 立体角の計量単位には次の2つがある。.

新しい!!: 伝熱と立体角 · 続きを見る »

熱の流れは様々な方法で作ることができる。 熱(ねつ、heat)とは、慣用的には、肌で触れてわかる熱さや冷たさといった感覚である温度の元となるエネルギーという概念を指していると考えられているが、物理学では熱と温度は明確に区別される概念である。本項目においては主に物理学的な「熱」の概念について述べる。 熱力学における熱とは、1つの物体や系から別の物体や系への温度接触によるエネルギー伝達の過程であり、ある物体に熱力学的な仕事以外でその物体に伝達されたエネルギーと定義される。 関連する内部エネルギーという用語は、物体の温度を上げることで増加するエネルギーにほぼ相当する。熱は正確には高温物体から低温物体へエネルギーが伝達する過程が「熱」として認識される。 物体間のエネルギー伝達は、放射、熱伝導、対流に分類される。温度は熱平衡状態にある原子や分子などの乱雑な並進運動の運動エネルギーの平均値であり、熱伝達を生じさせる性質をもつ。物体(あるいは物体のある部分)から他に熱によってエネルギーが伝達されるのは、それらの間に温度差がある場合だけである(熱力学第二法則)。同じまたは高い温度の物体へ熱によってエネルギーを伝達するには、ヒートポンプのような機械力を使うか、鏡やレンズで放射を集中させてエネルギー密度を高めなければならない(熱力学第二法則)。.

新しい!!: 伝熱と熱 · 続きを見る »

熱工学

熱工学(ねつこうがく、thermal engineering)とは、熱エネルギーを利用する方法や利用方法の原理と技術を扱う工学の一分野である。機械工学や化学工学で応用される。 熱エネルギーそのものを扱う物理学の一分野である熱力学を基礎とし、熱効率、エントロピー、エクセルギーを評価の方法として、熱サイクル、熱エネルギーからのエネルギー変換、蒸気、伝熱、燃焼、空気調和などを扱う。その他にも流体力学や化学も基礎とする。 下位の分野として、伝熱工学、燃焼工学などがある。.

新しい!!: 伝熱と熱工学 · 続きを見る »

熱伝導

熱伝導(ねつでんどう、英語: thermal conduction)は、物質の移動を伴わずに高温側から低温側へ熱が伝わる移動現象のひとつである。固体中では、熱伝導は原子の振動及びが担う。特に、金属においては、.

新しい!!: 伝熱と熱伝導 · 続きを見る »

熱伝導率

熱伝導率(ねつでんどうりつ、thermal conductivity)とは、温度の勾配により生じる伝熱のうち、熱伝導による熱の移動のしやすさを規定する物理量である。熱伝導度や熱伝導係数とも呼ばれる。記号は などで表される。 国際単位系(SI)における単位はワット毎メートル毎ケルビン(W/m K)であり、SI接頭辞を用いたワット毎センチメートル毎ケルビン(W/cm K)も使われる。.

新しい!!: 伝熱と熱伝導率 · 続きを見る »

熱量

熱量(ねつりょう)とは、物体間を伝わる熱や、燃料や食品の持つ熱を、比較したり数値で測ったりできるもの(=量)として捉えたもの。 単位はジュール(栄養学関係ではカロリー)が使われる。.

新しい!!: 伝熱と熱量 · 続きを見る »

熱流束

熱流束(ねつりゅうそく、Heat flux)とは、流束のひとつで、単位時間に単位面積を横切る熱量である。単位には W/m2 が用いられる。フーリエの法則によれば、熱流束は熱の流れる方向の温度勾配に比例する。その比例係数を熱伝導率(ρ:ロー)という。.

新しい!!: 伝熱と熱流束 · 続きを見る »

熱放射

熱放射(ねつほうしゃ、thermal radiation)は、伝熱の一種で、熱が電磁波として運ばれる現象。または物体が熱を電磁波として放出する現象をさす。熱輻射(ねつふくしゃ)、あるいは単に輻射ともいう。 熱を運ぶ過程には大きく分けて次の三通りがある。.

新しい!!: 伝熱と熱放射 · 続きを見る »

相変化

変化(そうへんか)とは、.

新しい!!: 伝熱と相変化 · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 伝熱と相転移 · 続きを見る »

黒体

黒体(こくたい、)あるいは完全放射体(かんぜんほうしゃたい)とは、外部から入射する電磁波を、あらゆる波長にわたって完全に吸収し、また熱放射できる物体のこと。.

新しい!!: 伝熱と黒体 · 続きを見る »

蒸発

蒸発(じょうはつ、英語:evaporation)とは、液体の表面から気化が起こる現象のことである。常温でも蒸発するガソリンなどの液体については、揮発(きはつ)と呼ばれることもある。.

新しい!!: 伝熱と蒸発 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 伝熱と電場 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 伝熱と電磁波 · 続きを見る »

温度

温度(おんど、temperature)とは、温冷の度合いを表す指標である。二つの物体の温度の高低は熱的な接触により熱が移動する方向によって定義される。すなわち温度とは熱が自然に移動していく方向を示す指標であるといえる。標準的には、接触により熱が流出する側の温度が高く、熱が流入する側の温度が低いように定められる。接触させても熱の移動が起こらない場合は二つの物体の温度が等しい。 統計力学によれば、温度とは物質を構成する分子がもつエネルギーの統計値である。熱力学温度の零点(0ケルビン)は絶対零度と呼ばれ、分子の運動が静止する状態に相当する。ただし絶対零度は極限的な状態であり、有限の操作で物質が絶対零度となることはない。また、量子的な不確定性からも分子運動が止まることはない。 温度はそれを構成する粒子の運動であるから、化学反応に直結し、それを元にするあらゆる現象における強い影響力を持つ。生物にはそれぞれ至適温度があり、ごく狭い範囲の温度の元でしか生存できない。なお、日常では単に温度といった場合、往々にして気温のことを指す場合がある。.

新しい!!: 伝熱と温度 · 続きを見る »

温度勾配

温度勾配(おんどこうばい、temperature gradient)とは、任意の2地点間における、温度の変化率・変化量のこと。気象学においては、鉛直方向の温度勾配である気温減率と区別して、特に水平方向に離れた2地点間での気温の変化率・変化量を指す。気温勾配とも言う。 一般的に、1kmあたりの温度の変化量を基準とし、単位にはケルビン毎キロメートル(K/km)が使われるが、K/mや℃/kmも用いられる。.

新しい!!: 伝熱と温度勾配 · 続きを見る »

浮力

浮力(ふりょく、)とは、水などの流体中にある物体に重力とは逆の方向に作用する力である。 浮力の原因はアルキメデスの原理によって説明される。物体は流体から圧力(静水圧)を受けている。このとき圧力は物体の上と下では異なり(富士山の頂上の気圧と麓の気圧のように)、下から受ける力の方が大きい。この物体が受ける上下の力の差が浮力である。すなわち、物体には上向きの力が作用する。.

新しい!!: 伝熱と浮力 · 続きを見る »

文部省

文部省(もんぶしょう、Ministry of Education, Science and Culture)は、かつて存在した日本の行政機関の1つで、教育、文化、学術などを担当していた。2001年(平成13年)の中央省庁再編にともない、総理府の外局であった科学技術庁と統合し文部科学省となった。日本以外の国で教育行政を担当する官庁は、文部省と訳されることがある。しかし、多くは「教育」と訳されることが多く「文部」が使われることはない(教育省を参照)。.

新しい!!: 伝熱と文部省 · 続きを見る »

日本物理学会

一般社団法人日本物理学会(いっぱんしゃだんほうじんにほんぶつりがっかい)は、1877年(明治10年)に創立された学会である。.

新しい!!: 伝熱と日本物理学会 · 続きを見る »

放射率

放射率(ほうしゃりつ、emissivity)は、物体が熱放射で放出する光のエネルギー(放射輝度)を、同温の黒体が放出する光(黒体放射)のエネルギーを 1 としたときの比である。0 以上 1 以下の値(無次元量)であり、物質により、また、光の波長により異なる。 キルヒホッフの法則によると, 放射率εと吸収率αは等しい: また、エネルギー保存則から、ある波長の光が物体に当たった時、反射率ρ、透過率τ、吸収率αの和は 1 になる: もしも、物体が十分に厚ければ、透過率τは 0 になる。すると となる。この式に上記のキルヒホッフの法則を使うと となる。すなわち、放射率εが大きければ反射率は小さく、逆に小さければ反射率は大きい。このことから、光をなるべく反射するには、放射率の小さな素材で物体表面を覆えばよいということがわかる。 例えば、消防士の着る耐熱服の表面が金属でコーティングされているのは、金属の放射率が広範囲の波長において低い(反射率が高い)ためである。高温な物体から照射される熱放射を反射することにより、消防士の体を高温から守るのである。.

新しい!!: 伝熱と放射率 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »