ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

一般型曲面

索引 一般型曲面

代数幾何学では、一般型曲面(surface of general type)とは、小平次元が 2 である代数曲面を言う。周の定理により、任意のコンパクトな次元 2 の複素多様体で小平次元が 2 のものは実際に代数曲面であり、ある意味でたいていの曲面はこのクラスに入っている。.

11 関係: 小平次元代数曲面チャーン類ネターの不等式ボゴモロフ・宮岡・ヤウの不等式エンリケス・小平の分類K3曲面Publications Mathématiques de l'IHÉS概複素構造有理曲面曲面の不正則数

小平次元

代数幾何学では、小平次元 (Kodaira dimension)(標準次元 (canonical dimension) とも呼ばれる) κ(X) で射影多様体 X の標準モデル (canonical model) の大きさを測る。 は、セミナー Shafarevich 1965 で、代数曲面のある数値的不変量を記号 κ として導入した。飯高茂(Shigeru Iitaka) は、で、この数値的不変量を拡張し、高次元の多様体の小平次元を定義した(このときは標準次元の名称)。後日 で、小平邦彦の名前にちなんで「小平次元」とした。.

新しい!!: 一般型曲面と小平次元 · 続きを見る »

代数曲面

数学において、代数曲面(algebraic surface)とは、多様体のが 2 である代数多様体のことを言う。複素数体上の場合には、代数曲面は複素次元 2(複素多様体として)であり、非特異(non-singular)のときには、微分可能多様体としては次元 4 である。 代数曲面の理論は、代数曲線(コンパクトリーマン面で、実次元が 2 の純粋な曲面)と比較して非常に複雑である。しかしながら、およそ 100年前の(Italian school of algebraic geometry)以来、多くの結果が得られている。.

新しい!!: 一般型曲面と代数曲面 · 続きを見る »

チャーン類

数学では、特に代数トポロジーや微分位相幾何学や代数幾何学では、チャーン類(Chern classes)は複素ベクトルバンドルに付随する特性類である。 チャーン類は、 で導入された。.

新しい!!: 一般型曲面とチャーン類 · 続きを見る »

ネターの不等式

数学では、(Max Noether)の名前にちなんだネターの不等式(Noether inequality)は、基礎となるトポロジカルな4次元多様体の位相形を限定するコンパクトな射影的な極小複素曲面の性質である。より一般的に、この性質のは、代数的閉体上の一般型の極小射影曲面について成り立つ。.

新しい!!: 一般型曲面とネターの不等式 · 続きを見る »

ボゴモロフ・宮岡・ヤウの不等式

数学では、ボゴモロフ・宮岡・ヤウの不等式(Bogomolov–Miyaoka–Yau inequality)は、コンパクトな一般型複素曲面のチャーン数についての不等式 のことである。主要な興味は、代数曲面の基礎となっている実 4-次元多様体の可能な位相形を限定したいがためである。この不等式は、シン=トゥン・ヤウ(丘成桐)、 宮岡洋一により証明され、後日 と ボゴモロフ(Fedor Bogomolov) により定数 3 を 8 と 4 へ置き換えた弱いバージョンが証明された。 アルマン・ボレル(Armand Borel)とフリードリッヒ・ヒルツェブルフ(Friedrich Hirzebruch)は、等号が保たれている無限に多くの場合を発見することにより、不等式が可能な限り保たれることを示した。不等式が成立しない場合は、標数が正の場合で、 と が(generalized Raynaud surface)のような、成立しない場合の標数 p での曲面の例を与えた。 c_1^2 \le 3 c_2\ between Chern numbers of compact complex surfaces of general type. Its major interest is the way it restricts the possible topological types of the underlying real 4-manifold. It was proved independently by and, after and proved weaker versions with the constant 3 replaced by 8 and 4. Borel and Hirzebruch showed that the inequality is best possible by finding infinitely many cases where equality holds. The inequality is false in positive characteristic: and gave examples of surfaces in characteristic p, such as generalized Raynaud surfaces, for which it fails.-->.

新しい!!: 一般型曲面とボゴモロフ・宮岡・ヤウの不等式 · 続きを見る »

エンリケス・小平の分類

数学においてエンリケス・小平の分類(Enriques–Kodaira classification)とは、コンパクトな複素曲面を10個のクラスへ分類する方法のことである。分類の各クラスはモジュライ空間によりパラメーター化することができる。大部分のクラスのモジュライ空間については良く理解されているが、一般型の曲面については明確に記述するには複雑すぎるとみられており、部分的結果しか知られていない。 初めに が複素射影曲面の分類を記述し、その後小平邦彦 がそれを代数的ではないコンパクト曲面を含む分類へと拡張した。標数 p > 0 における曲面の同様の分類を、 が行い、 により完成された。この分類は、標数 2 の場合に特異および超特異(supersingular)なエンリケス曲面を含むことや、標数 2 又は 3 の場合に準超楕円曲面が得られることを除けば、標数 0 の場合と類似している。.

新しい!!: 一般型曲面とエンリケス・小平の分類 · 続きを見る »

K3曲面

数学において、K3曲面 (K3 surface) とは、不正則数が で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり、後に が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。.

新しい!!: 一般型曲面とK3曲面 · 続きを見る »

Publications Mathématiques de l'IHÉS

Publications Mathématiques de l'IHÉS はである.Institut des Hautes Études Scientifiques によって,フランス国立科学研究センター (CNRS) の援助のもと,出版されている. Publications Mathématiques は1959年に創立され,年に1巻から5巻までの不規則な間隔で出版されている.現在では年2巻である.2017年現在, は であり,彼女は の である..

新しい!!: 一般型曲面とPublications Mathématiques de l'IHÉS · 続きを見る »

概複素構造

数学における多様体の概複素構造(がいふくそこうぞう、almost complex structure)は、多様体の各点での接ベクトル空間が(滑らかな)複素構造を持つことを言う。1つの多様体に対して複数の概複素構造が入る場合がある。また、複素解析的多様体は必ず概複素構造をもつ一方で、概複素構造を持ちながら複素解析的多様体とならないものが存在する。概複素多様体はシンプレクティック幾何学に重要な応用を持つ。 この概念は、1940年代の(Charles Ehresmann)と(Heinz Hopf)による。.

新しい!!: 一般型曲面と概複素構造 · 続きを見る »

有理曲面

代数幾何学で、有理曲面(rational surface)は射影平面に双有理同値な曲面、すなわち、次元が 2 の有理多様体のことを言う。有理曲面は、複素曲面のエンリケス・小平の分類の中の 10 個の曲面の最も単純なクラスで、最初に研究された曲面であった。.

新しい!!: 一般型曲面と有理曲面 · 続きを見る »

曲面の不正則数

数学では、複素曲面の不正則数(irregularity)とは、ホッジ数 h0,1.

新しい!!: 一般型曲面と曲面の不正則数 · 続きを見る »

ここにリダイレクトされます:

一般型代数曲面

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »