ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

K3曲面

索引 K3曲面

数学において、K3曲面 (K3 surface) とは、不正則数が で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、複素トーラスとともに 2次元のカラビ・ヤウ多様体である。ほとんどの複素K3曲面は代数的ではない。このことは、K3曲面を多項式により定義される曲面として射影空間へ埋め込むことができないことを意味する。K3曲面はラマヌジャンが1910年代に発見したが未発表に終わり、後に が再発見して、3人の代数幾何学者(クンマー、ケーラー、小平邦彦)と当時未踏峰だったK2に因みK3曲面と名付けた。.

33 関係: 小平邦彦小平次元射影平面一般型曲面弦理論微分同相写像ミラー対称性 (弦理論)チャーン類ネロン・セヴィリ群モジュライ空間リッチ平坦多様体フランス数学会ホモロジカルミラー対称性予想周期写像アーベル多様体エルンスト・クンマーエンリケス・小平の分類エーリッヒ・ケーラーオイラー標数カラビ予想カラビ・ヤウ多様体カッツ・ムーディ代数ケーラー多様体コンパクト化 (物理学)シュリニヴァーサ・ラマヌジャンシュプリンガー・サイエンス・アンド・ビジネス・メディアセール双対性被覆空間K2Magma (数式処理システム)標準束数学曲面の不正則数

小平邦彦

小平 邦彦(こだいら くにひこ、1915年3月16日 - 1997年7月26日)は、日本の数学者。東京都出身。日本人初のフィールズ賞およびウルフ賞受賞者。.

新しい!!: K3曲面と小平邦彦 · 続きを見る »

小平次元

代数幾何学では、小平次元 (Kodaira dimension)(標準次元 (canonical dimension) とも呼ばれる) κ(X) で射影多様体 X の標準モデル (canonical model) の大きさを測る。 は、セミナー Shafarevich 1965 で、代数曲面のある数値的不変量を記号 κ として導入した。飯高茂(Shigeru Iitaka) は、で、この数値的不変量を拡張し、高次元の多様体の小平次元を定義した(このときは標準次元の名称)。後日 で、小平邦彦の名前にちなんで「小平次元」とした。.

新しい!!: K3曲面と小平次元 · 続きを見る »

射影平面

数学における射影平面(しゃえいへいめん、projective plane)は、初等的な平面の概念を拡張する幾何学的な構成である。通常の平面においては、二直線は典型的には一つの点で交わるが、特定の直線の組(平行線)については交わりを持たない。一つの見方として、射影平面は、通常の平面に平行線の交点として「無限遠点」を追加したものになっている。従って、射影平面では任意の相異なる二直線がただ一点において交わる。 射影平面の定義としてよく用いられるものが二種類ある。ひとつは線型代数学から来るもので、この場合の射影平面は、適当なに対する等質空間として与えられる。この場合の重要な例として、 および が挙げられる。後者はもっと一般のおよび有限幾何学の立場で定義することもできる。これは平面幾何学の接続的性質の研究に適している。 射影平面の概念は、もっと高次元の射影空間の概念に一般化される。射影平面は二次元の射影空間である。.

新しい!!: K3曲面と射影平面 · 続きを見る »

一般型曲面

代数幾何学では、一般型曲面(surface of general type)とは、小平次元が 2 である代数曲面を言う。周の定理により、任意のコンパクトな次元 2 の複素多様体で小平次元が 2 のものは実際に代数曲面であり、ある意味でたいていの曲面はこのクラスに入っている。.

新しい!!: K3曲面と一般型曲面 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: K3曲面と弦理論 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: K3曲面と微分同相写像 · 続きを見る »

ミラー対称性 (弦理論)

数学や理論物理学において、ミラー対称性(mirror symmetry)はカラビ・ヤウ多様体と呼ばれる幾何学的な対象の間の関係であり、2つの カラビ・ヤウ多様体が幾何学的には全く異なっているにもかかわらず、弦理論の余剰次元としてそれらを扱うと等価となる対称性のことを言う。この場合、多様体は互いに「ミラー多様体」であると呼ばれる。 ミラー対称性はもともとは、物理学者によって発見された。数学者がミラー対称性に興味を持ち始めたのは1990年頃で、特に、(Philip Candelas)、ゼニア・デ・ラ・オッサ(Xenia de la Ossa)、パウル・グリーン(Paul Green)、リンダ・パークス(Linda Parks)らによって、ミラー対称性を数々の方程式の解の数を数える数学の分野である数え上げ幾何学で使うことができることが示されていた。実際、キャンデラスたちは、ミラー対称性を使いカラビ・ヤウ多様体の上の有理曲線を数えることができ、長きにわたり未解決であった問題を解明できることを示した(参照項目:ミラー対称性の応用)。元来のミラー対称性へのアプローチは、理論物理学者からの必ずしも数学的には厳密(mathematical rigor)ではないアイデアに基づいているにもかかわらず、数学者はミラー対称性予想のいくつかを数学的に厳密な証明に成功しつつある。 今日では、ミラー対称性は純粋数学の主要な研究テーマであり、数学者は物理学者の直感に基づくミラー対称性を数学的に深く理解しつつある。ミラー対称性は弦理論の計算を実行する際の基本的なツールでもある。ミラー対称性への主要なアプローチは、マキシム・コンツェビッチ(Maxim Kontsevich)のホモロジカルミラー対称性予想のプログラムやアンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)のSYZ予想を含んでいる。 Yau and Nadis 2010 Although the original approach to mirror symmetry was based on nonrigorous ideas from theoretical physics, mathematicians have gone on to rigorously prove some of the mathematical predictions of mirror symmetry.

新しい!!: K3曲面とミラー対称性 (弦理論) · 続きを見る »

チャーン類

数学では、特に代数トポロジーや微分位相幾何学や代数幾何学では、チャーン類(Chern classes)は複素ベクトルバンドルに付随する特性類である。 チャーン類は、 で導入された。.

新しい!!: K3曲面とチャーン類 · 続きを見る »

ネロン・セヴィリ群

代数幾何学では、代数多様体のネロン・セヴィリ群(Néron–Severi group)は、(algebraic equivalence)による因子群の同値類群のことをいう。言い換えると、ネロン・セヴィリ群は、多様体のピカールスキームの(components)のことをいう。ネロン・セヴィリ群のランクは、ピカール数と呼ばれる。この群の命名は、(Francesco Severi)と(André Néron)にちなむ。.

新しい!!: K3曲面とネロン・セヴィリ群 · 続きを見る »

モジュライ空間

代数幾何学では、モジュライ空間(moduli space)とは(普通、スキーム、もしくは(algebraic stack))空間の点が、決められた種類の代数幾何学的な対象を表す点となっている、もしくは、そのような対象と(isomorphism class)を表現している点からなる幾何学的な空間のことを言う。そのような空間はしばしば分類問題の解として現れる。注目している対象の集まり(例えば、決められた種数を持つ滑らかな代数曲線のような)へ幾何学的空間の構造を与えることができると、出来上がる空間に座標を導入することで対象をパラメータ化することができる。この脈絡では、「モジュラス」という用語は「パラメータ」と同じような意味に使われる。モジュライ空間は、初期には、対象の空間というよりはパラメータの空間として理解されていた。.

新しい!!: K3曲面とモジュライ空間 · 続きを見る »

リッチ平坦多様体

数学では、リッチ平坦多様体(Ricci-flat manifolds)は、リッチ曲率が 0 であるリーマン多様体である。物理学では、リッチ平坦多様体は、任意の次元で宇宙定数が 0 であるリーマン多様体に対して、アインシュタイン方程式の類似である(vacuum solution)を表わす。リッチ平坦多様体は、通常は宇宙定数が 0 である必要はないアインシュタイン多様体の特別な場合である。 リッチ曲率が、小さな測地用の球の体積がユークリッド空間の中の球の体積から逸脱する量を測る。小さな測地用の球は、体積の変えはしないが、ユークリッド空間の中の標準的な球とは「形」を変えることもありうる。 たとえば、リッチ平坦な多様体の中では、ユークリッド空間の中の円は、変形されて同じ面積を持つ楕円となっていることもありうる。これは(Weyl curvature)のおかげである。 リッチ平坦多様体は、(holonomy group)を制限される場合が多い。重要なケースとして、カラビ・ヤウ多様体や超ケーラー多様体がある。.

新しい!!: K3曲面とリッチ平坦多様体 · 続きを見る »

フランス数学会

フランス数学会(フランス語:Société Mathématique de France、略称:SMF)はフランス人数学者による学会。 1872年に Émile Lemoine によって設立され、最も歴史ある数学会の一つである。.

新しい!!: K3曲面とフランス数学会 · 続きを見る »

ホモロジカルミラー対称性予想

ホモロジカルミラー対称性は、マキシム・コンツェビッチにより予想された数学の予想である。物理学者が弦理論を研究することにより初めて観察された、ミラー対称性と呼ばれる現象の数学的、系統的な説明を求める。.

新しい!!: K3曲面とホモロジカルミラー対称性予想 · 続きを見る »

周期写像

数学では代数幾何学の分野において、周期写像(period mapping)がケーラー多様体の族とホッジ構造の族とを関係付ける。.

新しい!!: K3曲面と周期写像 · 続きを見る »

アーベル多様体

数学において、特に代数幾何学や複素解析や数論では、アーベル多様体(abelian variety)は、射影代数多様体であり、また正則函数(regular function)により定義することのできる群法則を持つ代数群でもある代数多様体を言う。アーベル多様体は、代数幾何の最も研究されている対象であり、同時に代数幾何学や数論やそれ以外の他の分野の研究の不可欠な道具である。 アーベル多様体は、任意の体に係数を持つ方程式により定義することができる。従って、多様体はその体の上で定義されると言う。歴史的には、最初研究されたアーベル多様体は複素数体上で定義された多様体であった。そのようなアーベル多様体はまさに複素射影空間へ埋め込むことができ複素トーラスであることが判明している。代数体上に定義されたアーベル多様体は、特別であり、数論の観点から重要である。環の局所化のテクニックは、数体上に定義されたアーベル多様体から有限体上や様々な局所体上に定義されたアーベル多様体を自然に導く。 アーベル多様体は代数多様体のヤコビ多様体(ピカール多様体のゼロ点の連結成分として)自然に現れてくる。アーベル多様体の群法則は必然的に可換となり、多様体は非特異となる。楕円曲線のアーベル多様体は次元が 1 である。アーベル多様体は小平次元が 0 である。.

新しい!!: K3曲面とアーベル多様体 · 続きを見る »

エルンスト・クンマー

ルンスト・エドゥアルト・クンマー(Ernst Eduard Kummer、1810年1月29日 ブランデンブルク・ゾーラウ Sohrau(ポーランド・ルブシュ県) - 1893年5月14日)は、ドイツの数学者。ワイエルシュトラス、(彼の教え子の一人)クロネッカーと共に、ベルリン大学の三大数学者の一人として指導的役割を果たした。最初は関数論を研究していたが、1840年代からは代数的整数論に関心を持つようになり、円分体とそのイデアル類と類数を中心的に研究するようになった。彼はその後のイデアル論の基礎となるものを確立し、L関数の値のp進的な性質を調べていった。この他、砲弾の弾道計算で業績を残している。オーギュスタン・ルイ・コーシーとガブリエル・ラメが行った虚数を含む素因数分解に一意性がないことを指摘した。しかし、クンマーは一意性の問題に取り組み、多くの場合について一意性を復活させる方法として理想数を導入した。この方法はのちにリヒャルト・デーデキントによってまとめられ、イデアル概念が生まれた。 大学での講義中、とっさに九九が計算できなかった逸話が有名である。数々の業績を残した彼だが、瞬発的な数字の計算能力はむしろ低かったようである。.

新しい!!: K3曲面とエルンスト・クンマー · 続きを見る »

エンリケス・小平の分類

数学においてエンリケス・小平の分類(Enriques–Kodaira classification)とは、コンパクトな複素曲面を10個のクラスへ分類する方法のことである。分類の各クラスはモジュライ空間によりパラメーター化することができる。大部分のクラスのモジュライ空間については良く理解されているが、一般型の曲面については明確に記述するには複雑すぎるとみられており、部分的結果しか知られていない。 初めに が複素射影曲面の分類を記述し、その後小平邦彦 がそれを代数的ではないコンパクト曲面を含む分類へと拡張した。標数 p > 0 における曲面の同様の分類を、 が行い、 により完成された。この分類は、標数 2 の場合に特異および超特異(supersingular)なエンリケス曲面を含むことや、標数 2 又は 3 の場合に準超楕円曲面が得られることを除けば、標数 0 の場合と類似している。.

新しい!!: K3曲面とエンリケス・小平の分類 · 続きを見る »

エーリッヒ・ケーラー

ハンブルグにて) エーリッヒ・ケーラー(, 1906年1月16日 - 2000年5月31日)は、ドイツの数学者および哲学者。ライプツィヒ生まれ、ハンブルク近郊のにて没。.

新しい!!: K3曲面とエーリッヒ・ケーラー · 続きを見る »

オイラー標数

イラー標数(オイラーひょうすう、)とは、位相空間のもつある種の構造を特徴付ける位相不変量のひとつ。オイラーが多面体の研究においてこの不変量を用いたことからこの名がある。オイラー数と呼ばれることもあるが、オイラー数は別の意味で使われることも多い。.

新しい!!: K3曲面とオイラー標数 · 続きを見る »

カラビ予想

数学においてカラビ予想(Calabi conjecture)とは、ある種の複素多様体上に「良い」性質を持つリーマン計量が存在することを主張する予想である。 が1950年代に提出し、1977年頃ににより解決された。この証明を理由のひとつとしてヤウは1982年フィールズ賞を受賞した。 カラビ予想とは、コンパクト ケーラー多様体は、2-形式により与えられる任意のリッチ曲率に対し、リッチ曲率の所属する第一チャーン類に対し、多様体上に一意にケーラー計量が決まるであろうという予想である。特に、第一チャーン類がゼロである場合には、リッチ曲率がゼロとなる同じクラスのなかに一意的にケーラー計量が決まり、これらをカラビ・ヤウ多様体と言う。 さらに公式に、カラビ予想を記述すると、 カラビ予想は、どのようなケーラー多様体がケーラー・アインシュタイン計量を持つのかという問題と密接に関連する。 g\; and Kähler form \omega\;, and R is any (1,1)-form representing the manifold's first Chern class, then there exists a unique Kähler metric \tilde on M with Kähler form \tilde such that \omega\; and \tilde represent the same class in cohomology H2(M,R) and the Ricci form of \tilde is R. The Calabi conjecture is closely related to the question of which Kähler manifolds have Kähler–Einstein metrics.-->.

新しい!!: K3曲面とカラビ予想 · 続きを見る »

カラビ・ヤウ多様体

ラビ・ヤウ多様体は、代数幾何などの数学の諸分野や数理物理で注目を浴びている特別なタイプの多様体。特に超弦理論では、時空の余剰次元が6次元(実次元)のカラビ・ヤウ多様体の形をしていると予想されている。この余剰次元の考え方が、ミラー対称性の考えを導くことになった。 カラビ・ヤウ多様体は、1次元の楕円曲線や2次元のK3曲面の高次元版の複素多様体であり、コンパクトケーラー多様体で標準バンドルが自明なものとして定義されることが多い。ただし、他にも類似の(しかし互いに同値ではない)いくつかの定義がある。では、"カラビ・ヤウ空間"と呼ばれた。最初は微分幾何学の立場から、エウゲニオ・カラビで研究され、シン=トゥン・ヤウが、これらがリッチ平坦な計量を持つであろうというカラビ予想を証明したことから、カラビ・ヤウ多様体と命名された。.

新しい!!: K3曲面とカラビ・ヤウ多様体 · 続きを見る »

カッツ・ムーディ代数

数学において、カッツ・ムーディ(・リー)代数(Kac–Moody algebra)とは、一般カルタン行列を用いて生成元と関係式によって定義できる、通常は無限次元の、リー代数である。独立に発見したヴィクトル・カッツとに因んで名づけられている。カッツ・ムーディ・リー環は有限次元半単純リー環の一般化であり、ルート系、既約表現、との関連といった、リー環の構造に関係した多くの性質は、カッツ・ムーディ・リー環において自然な類似を持つ。 カッツ・ムーディ・リー環の中でもアフィン・リー環と呼ばれるクラスが、数学や理論物理学、特に共形場理論やの理論において、特に重要である。カッツは、組合せ論的な恒等式であるマクドナルド恒等式の、アフィン・リー環の表現論に基づいたエレガントな証明を発見した。Howard Garland と は が類似の方法で導出できることを証明した。.

新しい!!: K3曲面とカッツ・ムーディ代数 · 続きを見る »

ケーラー多様体

数学、特に微分幾何学において、ケーラー多様体(Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。 滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。 ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。.

新しい!!: K3曲面とケーラー多様体 · 続きを見る »

コンパクト化 (物理学)

物理学では、コンパクト化(compactification)は、時空の次元の観点より理論を変更することを意味する。無限次元であるような次元も含む次元に替わりに、有限の次元を持つような理論に変更して、周期的な理論することを言う。 時間をコンパクト化する熱場の量子論では、コンパクト化が重要な部分を担い、理論の余剰次元をコンパクト化し、2次元もしくは 1次元の固体物理学では、3次元の普通の空間次元の極限である系を考える。 コンパクト化される次元の大きさが 0 となる極限で、この余剰次元に依存する場は存在せず、理論は(Dimensional reduction)される。 M \times C is compactified over the compact C and after Kaluza–Klein decomposition, we have an effective field theory over M.-->.

新しい!!: K3曲面とコンパクト化 (物理学) · 続きを見る »

シュリニヴァーサ・ラマヌジャン

ュリニヴァーサ・アイヤンガー・ラマヌジャン(Srinivasa Aiyangar Ramanujan、1887年12月22日 - 1920年4月26日)はインドの数学者。極めて直感的、天才的な閃きにより「インドの魔術師」の異名を取った。.

新しい!!: K3曲面とシュリニヴァーサ・ラマヌジャン · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: K3曲面とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

セール双対性

代数幾何学という数学の分野において,セール双対性(セールたいしょうせい、Serre duality)は, 次元の非特異射影代数多様体 (あるいはより一般的にベクトル束やさらに連接層)に関する双対性である.それはコホモロジー群 が別のもの の双対空間である述べている. 滑らかなコンパクト複素多様体 上の正則ベクトル束 に対する場合は,主張は であり, は射影的である必要はない..

新しい!!: K3曲面とセール双対性 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: K3曲面と被覆空間 · 続きを見る »

K2

K2(ケーツー)は、カラコルム山脈にある山。標高は8,611mで、エベレストに次ぐ世界第2位の高さである。パキスタンのギルギット・バルティスタン州(インドの主張によればインドカシミールのパキスタン占領地)と、中華人民共和国のウイグル自治区との国境に位置する。 K2という頭文字はKarakorum No.2 、つまりカラコルム山脈測量番号2号を意味する。 パキスタンの最高峰であり、カラコルム山脈の最高峰でもある。.

新しい!!: K3曲面とK2 · 続きを見る »

Magma (数式処理システム)

Magma は代数学、数論、代数幾何学、組合せ数学の問題を解くために開発された計算機代数ソフトウェアである。Magma という名前は代数的構造のマグマから取られている。Magma は Unix 系あるいは Linux で実行できる。または Windows でも利用することができる。.

新しい!!: K3曲面とMagma (数式処理システム) · 続きを見る »

標準束

数学において,体上の 次元非特異代数多様体 の標準束(ひょうじゅんそく,canonical bundle)とは,直線束, すなわち 上の余接束 の 次外冪である. 複素数体上,それは 上の正則 形式の行列式束である.これは 上のセール双対性に対する dualising object である.それはまた可逆層と考えることもできる. 標準類 (canonical class) とは標準束を生じる 上の のである――それは 上のの同値類であり,それに属する任意の因子を標準因子 (canonical divisor) と呼んでよい.反標準 (anticanonical) 因子は を任意の標準因子として因子 のことである. 反標準束 (anticanonical bundle) は対応する である. の反標準束が豊富であるとき, はファノ多様体と呼ばれる. \omega_D.

新しい!!: K3曲面と標準束 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: K3曲面と数学 · 続きを見る »

曲面の不正則数

数学では、複素曲面の不正則数(irregularity)とは、ホッジ数 h0,1.

新しい!!: K3曲面と曲面の不正則数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »