ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

空間充填曲線

索引 空間充填曲線

解析学において,空間充填曲線(くうかんじゅうてんきょくせん,space-filling curve)とは,値域が2次元の単位正方形(あるいはより一般に 次元の単位超立方体)全体を含む曲線である.ジュゼッペ・ペアノ (Giuseppe Peano, 1858–1932) が最初にその1つを発見したので,2次元平面における空間充填曲線はペアノ曲線と呼ばれることもあるが,この名称はペアノによって発見された特定の空間充填曲線の例も指す..

43 関係: 単位区間単位正方形多様体局所連結空間三進法平面位相同型位相空間区分的区分線形関数ペアノ曲線像 (数学)ハンス・ハーンハウスドルフ空間ユークリッド空間パベル・ウリゾーンヒルベルト曲線フラクタルドラゴン曲線ダフィット・ヒルベルト分離公理カミーユ・ジョルダンカントール空間カントール関数カントール集合ゲオルク・カントールコンパクト空間コッホ曲線ジュゼッペ・ペアノ全単射共通部分 (数学)値域第二可算的空間結び目理論被覆空間解析学超立方体距離化定理連続写像連結空間Mathematische Annalen濃度 (数学)曲線

単位区間

数学において、単位区間(たんいくかん、unit interval)とは、閉区間, つまり 0 以上 1 以下の全ての実数からなる集合である(0 と 1 を含む)。しばしば I と表記される。実解析での役割に加えて、単位区間は位相幾何学におけるホモトピーの研究でも使われる。 書籍によっては、上記の定義以外の単位区間(0 と 1 を含むか含まないか)を使う場合もあり、(0, 1、.

新しい!!: 空間充填曲線と単位区間 · 続きを見る »

単位正方形

ユークリッド空間における単位正方形 数学における単位正方形(たんいせいほうけい、unit square)は一辺の長さが の正方形を言う。しばしば一意な ("the") 単位正方形として、四つの頂点が で与えられるものを指す。.

新しい!!: 空間充填曲線と単位正方形 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 空間充填曲線と多様体 · 続きを見る »

局所連結空間

位相幾何学や数学の他の分野において、位相空間 X が局所連結(きょくしょれんけつ、locally connected)であるとは、すべての点が、連結開集合のみからなる近傍基を持つことをいう。.

新しい!!: 空間充填曲線と局所連結空間 · 続きを見る »

三進法

三進法(さんしんほう)とは、3 を底(てい、基(base)とも)とし、底の冪の和で数を表現する方法である。.

新しい!!: 空間充填曲線と三進法 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 空間充填曲線と平面 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 空間充填曲線と位相同型 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 空間充填曲線と位相空間 · 続きを見る »

区分的

数学における区分定義写像(くぶんていぎしゃぞう、piecewise-defined function; 区分的に定義された函数)あるいは区分(ごとの)写像 (piecewise function) は、独立変数の値によってその写像を定義する「対応規則」が変化するような写像である。つまり区分定義写像は、その定義域の分割の各小片(定義域片)上で定義された複数の写像の寄せ集めとして定義される。 区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。.

新しい!!: 空間充填曲線と区分的 · 続きを見る »

区分線形関数

関数(青)とその区分線形近似(赤) 2次元の区分線形関数(上)とそれが線形となる凸多面体(下) 数学における区分的に一次な函数あるいは区分線形関数(くぶんせんけいかんすう、Piecewise linear function)とは、区分的に定義される函数で、各区分が一次函数(線型函数)となっていうようなものをいう。 区分的に線型な函数の概念は、いくつか異なる文脈で意味を持つ。区分的に線型な函数 の定義域 としては、-次元ユークリッド空間や、より一般のベクトル空間あるいはアフィン空間をとることもできるし、他にもや単体的複体などといったようなものの上でも定義される。いずれの場合にも、終域 は実数の全体やベクトル空間、アフィン空間であったり、あるいはPL多様体や単体複体に値をとる区分線型函数(区分線型写像)をも考えることができる。なお、この文脈における「線型」は専ら線型写像の意味で用いられているのではなく、より一般のアフィン線型写像の意味にとる必要がある。 次元が 2 以上の場合には、定義域 の各小片 が多角形や多面体となるものと仮定することが多く、こうすれば函数のグラフが多角形や多面体の小片の貼り合わせとなることが保証される。 区分的に一次な函数のクラスの重要な部分クラスとして、区分的に線型な連続函数のクラスや区分線型凸函数のクラスなどが挙げられる。区分的に線型な実函数が連続ならば、そのグラフはになる。スプライン曲線は区分的に一次な函数を一般化するもので、区分的に高次の多項式やさらに言えばを考えるものである。.

新しい!!: 空間充填曲線と区分線形関数 · 続きを見る »

ペアノ曲線

幾何学において,ペアノ曲線(Peano curve)は空間充填曲線の最初に発見された例であり,1890年ジュゼッペ・ペアノ (Giuseppe Peano) による.ペアノ曲線は単位区間から単位正方形の上への全射連続関数であるが,単射ではない.ペアノはこれら2つの集合が同じ濃度をもつというゲオルグ・カントルの以前の結果に動機づけられた.この例のため,「ペアノ曲線」をより一般に任意の空間充填曲線を指すために用いる著者もいる..

新しい!!: 空間充填曲線とペアノ曲線 · 続きを見る »

像 (数学)

'''f''' は始域 '''X''' から終域 '''Y''' への写像。'''Y''' の内側にある小さな楕円形が '''f''' の像である。 数学において、何らかの写像の像(ぞう、image)は、写像の始域(域、定義域)の部分集合上での写像の出力となるもの全てからなる、写像の終域(余域)の部分集合である。すなわち、始域の部分集合 X の各元において写像の値を評価することによって得られる集合を f による(または f に関する、f のもとでの、f を通じた)X の像という。また、写像の終域の何らかの部分集合 S の逆像(ぎゃくぞう、inverse image)あるいは原像(げんぞう、preimage)は、S の元に写ってくるような始域の元全体からなる集合である。 像および逆像は、写像のみならず一般の二項関係に対しても定義することができる。.

新しい!!: 空間充填曲線と像 (数学) · 続きを見る »

ハンス・ハーン

ハンス・ハーン(Hans Hahn, 1879年9月27日 - 1934年7月24日)はオーストリアの数学者。関数解析学、位相幾何学、集合論、変分法、実解析、秩序理論などに多くの貢献を果たした。 ウィーン生まれ。ウィーン工科大学で学ぶ。また、ストラスブール大学、ミュンヘン大学、ゲッティンゲン大学でも学んでいる。1905年、ウィーン大学の教員に任命される。その後、チェルニウツィー大学、ボン大学の助教授、教授を経て、1921年にウィーン大学で数学教授に就任した。 哲学にも大いに関心を抱き、論理実証主義の立場にたつ科学者が哲学者たちが定期的にウィーンで開いていた会合であるウィーン学団にも参加している。 数学的貢献としてはハーン-バナッハの定理や一様有界性原理 (uniform boundedness principle) がある。いずれもステファン・バナフやフーゴ・シュタインハウス (Hugo Steinhaus) とは独立に定式化したもの。他には以下の定理にも貢献している。.

新しい!!: 空間充填曲線とハンス・ハーン · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 空間充填曲線とハウスドルフ空間 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 空間充填曲線とユークリッド空間 · 続きを見る »

パベル・ウリゾーン

パベル・ウリゾーン パベル・サムイロヴィチ・ウリゾーン(Па́вел Самуи́лович Урысо́н、Pavel Samuilovich Urysohn、1898年2月3日 - 1924年8月17日) は、ロシアの数学者。ニコライ・ルージンの弟子。 ロシア帝国のオデッサ生まれ。モスクワ大学で1915年から1921年まで学んだ。卒業後、モスクワ大学で数学の助教授となったが、1924年フランスブルターニュ地方の海岸で溺死した。.

新しい!!: 空間充填曲線とパベル・ウリゾーン · 続きを見る »

ヒルベルト曲線

ヒルベルト曲線の最初の8ステップ 1次のヒルベルト曲線 1次、2次のヒルベルト曲線 1次、2次、3次のヒルベルト曲線 3次元のヒルベルト曲線。 ヒルベルト曲線(ヒルベルトきょくせん、Hilbert curve)は、フラクタル図形の一つで、空間を覆い尽くす空間充填曲線の一つ。ドイツの数学者ダフィット・ヒルベルトが1891年に考案した。 平面を充填するため、ヒルベルト曲線のハウスドルフ次元は、n\to\infty の極限で2である。 n 次のヒルベルト曲線 H_n のユークリッド距離は 2^n - となる。すなわち、 n に対して指数的に増加する。.

新しい!!: 空間充填曲線とヒルベルト曲線 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: 空間充填曲線とフラクタル · 続きを見る »

ドラゴン曲線

ドラゴン曲線(ドラゴンきょくせん、)とは、L-system(リンデンマイヤー・システム)のような再帰法を用いて構成することの出来る、ある自己相似性フラクタルの族に含まれている曲線のことを言う。.

新しい!!: 空間充填曲線とドラゴン曲線 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 空間充填曲線とダフィット・ヒルベルト · 続きを見る »

分離公理

数学の位相空間論周辺分野において、考えたい種類の位相空間を割り出すための様々な制約条件が知られている。そういった制約のうちのいくつかが分離公理(ぶんりこうり、separation axioms)と呼ばれる条件によって与えられる。に因んで、チホノフの分離公理とも呼ばれる。 分離公理が「公理」であるのは、位相空間に関する概念を定義するときに、これらの条件を余分な公理として追加して、位相空間がどのようなものかによってより制限された概念を得るという意味においてのみである。現代的なアプローチでは、きっぱりと位相空間を公理化してしまってから位相空間の「種類」について述べるという形になっているが、「分離公理」の語が定着している。いくつかの分離公理に "T" が付くのは「分離公理」を意味するドイツ語の Trennungsaxiom に由来する。 分離公理に関する用語の正確な意味は時とともに変化してきた。特に、古い文献を参照する際には、そこで述べられているそれぞれの条件の定義が、自分がそうだと思っている語の意味と一致しているかどうか確認しておくべきである。.

新しい!!: 空間充填曲線と分離公理 · 続きを見る »

カミーユ・ジョルダン

マリ・エヌモン・カミーユ・ジョルダン(Marie Ennemond Camille Jordan、1838年1月5日 - 1922年1月22日)はフランスの数学者。群論に関する基礎的研究と、影響力のある著書"Cours d'analyse"の二つによって有名である。 リヨンで生まれ、エコール・ポリテクニークで教育を受けた(1855年入学)。職業的な技術者になり、エコール・ポリテクニークで教鞭をとった。コレージュ・ド・フランスでリウヴィルの跡を継ぎ、独特な記号表記によって好評を博した。 今日、彼の名は以下に挙げる基礎的研究の成果よって記憶されている。.

新しい!!: 空間充填曲線とカミーユ・ジョルダン · 続きを見る »

カントール空間

数学におけるカントール空間(カントールくうかん、Cantor space)は、ゲオルク・カントールに名を因む、古典的なカントール集合の位相空間論的抽象化である。すなわち、カントール集合に同相な位相空間をカントール空間と呼ぶ。集合論においては、位相空間 ( は最小の無限順序数)を「一意な」 ("the") カントール空間と呼ぶ。注意点として、ふつうは を単にカントール集合と呼び、カントール空間という語はより一般の の構成のために用いる(ここで は有限集合、 は大抵有限か可算だが非可算にもなり得る)。.

新しい!!: 空間充填曲線とカントール空間 · 続きを見る »

カントール関数

ントール関数(カントールかんすう、Cantor function)または悪魔の階段(あくまのかいだん、Devil's staircase)とは、連続ではあるが絶対連続ではない関数の一つである。カントール関数の名前はゲオルク・カントールに由来する。.

新しい!!: 空間充填曲線とカントール関数 · 続きを見る »

カントール集合

ントール集合(カントールしゅうごう、Cantor set)は、フラクタルの1種で、閉区間 に属する実数のうち、その三進展開のどの桁にも 1 が含まれないような表示ができるもの全体からなる集合である。1874年にイギリスの数学者により発見され、1883年にゲオルク・カントールによって紹介された。 カントールの三進集合とも呼ばれ、カントル集合、カントルの三進集合とも表記される。フラクタル概念の生みの親であるブノワ・マンデルブロは、位相次元が 0 の図形をダスト(塵)と呼び、カントール集合のことはカントール・ダストやカントールのフラクタルダストと呼んでいた。.

新しい!!: 空間充填曲線とカントール集合 · 続きを見る »

ゲオルク・カントール

ルク・カントール ゲオルク・フェルディナント・ルートヴィッヒ・フィリップ・カントール(Georg Ferdinand Ludwig Philipp Cantor, 1845年3月3日 - 1918年1月6日)は、ドイツで活躍した数学者。.

新しい!!: 空間充填曲線とゲオルク・カントール · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 空間充填曲線とコンパクト空間 · 続きを見る »

コッホ曲線

ッホ曲線(コッホきょくせん、Koch curve)はフラクタル図形の一つ。スウェーデンの数学者ヘルゲ・フォン・コッホ (Helge von Koch) が考案した。線分を3等分し、分割した2点を頂点とする正三角形の作図を無限に繰り返すことによって得られる図形である。1回の操作で線分の長さが 4/3 倍になるので、操作を無限に繰り返して得られるコッホ曲線の長さは無限大である。高木曲線などと同様に、連続でありながら至るところで微分不可能な曲線である。 コッホ曲線は相似比が1/3の4個のセグメントから成っているので、フラクタル次元(相似次元)は、3を底とする4の対数(logを必ずしも自然対数である必要はない任意の対数として、log4 / log3.

新しい!!: 空間充填曲線とコッホ曲線 · 続きを見る »

ジュゼッペ・ペアノ

ュゼッペ・ペアノ(ペアーノ、Giuseppe Peano, 1858年8月27日、ピエモンテ州クーネオ – 1932年4月20日、トリノ)はイタリアの数学者。トリノ大学教授。自然数の公理系 (ペアノの公理)、ペアノ曲線の考案者として知られる。 人工言語の一つである無活用ラテン語を提唱したことでも知られる。.

新しい!!: 空間充填曲線とジュゼッペ・ペアノ · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 空間充填曲線と全単射 · 続きを見る »

共通部分 (数学)

数学において、集合族の共通部分(きょうつうぶぶん、intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、)、積集合(せきしゅうごう)、積(せき)、などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。.

新しい!!: 空間充填曲線と共通部分 (数学) · 続きを見る »

値域

数学、特に素朴集合論における写像の値域(ちいき、range)は、その写像の終域または像の何れかの意味で用いられる。現代的な用法ではほとんど全ての場合において「像」の意味である。.

新しい!!: 空間充填曲線と値域 · 続きを見る »

第二可算的空間

数学の位相空間論おける第二可算空間(だいにかさんくうかん、second-countable space)とは、第二可算公理を満たす位相空間のことである。空間が第二可算公理を満たすとは「その位相が可算な開基を持つ」ということを言う。つまり、位相空間 T が第二可算的であるとは、T の可算個の開集合からなる族 \mathcal.

新しい!!: 空間充填曲線と第二可算的空間 · 続きを見る »

結び目理論

結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。.

新しい!!: 空間充填曲線と結び目理論 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: 空間充填曲線と被覆空間 · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: 空間充填曲線と解析学 · 続きを見る »

超立方体

4次元超立方体 超立方体(ちょうりっぽうたい、hypercube)とは、2次元の正方形、3次元の立方体、4次元の正八胞体を各次元に一般化した正多胞体である。なお、0次元超立方体は点、1次元超立方体は線分である。 正測体(せいそくたい)、γ体(ガンマたい)とも言い、n 次元超立方体を \gamma_n と書く。 正単体、正軸体と並んで、5次元以上での3種類の正多胞体の1つである。 単に超立方体と言った場合は特に四次元の超立方体(tesseract)を指すこともある。 右図は、四次元超立方体を二次元に投影した図である。立方体を二次元に投影した場合と同様に、各辺の長さや成す角度は歪んでいるが、実際の辺の長さはすべて等しく、角も直角である。胞(立方体)の数は、投影図において外側の大きな立方体、内側の立方体、これら2つの対応する面をそれぞれ結ぶ(対応する稜線を4つ選ぶ)部分に6つあり、胞は計8つである。.

新しい!!: 空間充填曲線と超立方体 · 続きを見る »

距離化定理

位相幾何学および関連する数学の分野において、距離化可能空間(きょりかかのうくうかん、)とは、距離空間と位相同型な位相空間のことを言う。すなわち、ある位相空間 (X,\tau) が距離化可能であるとは、ある距離 で、それによって導かれる位相が \tau であるようなものが存在することを言う。距離化定理(きょりかていり、)とは、位相空間が距離化可能であるための十分条件を与える定理のことを言う。.

新しい!!: 空間充填曲線と距離化定理 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 空間充填曲線と連続写像 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 空間充填曲線と連結空間 · 続きを見る »

Mathematische Annalen

Mathematische Annalen(略記はMath.

新しい!!: 空間充填曲線とMathematische Annalen · 続きを見る »

濃度 (数学)

数学、とくに集合論において、濃度(のうど)あるいは基数(きすう)(cardinal number, cardinality, power)とは、集合の「元の個数」という概念を拡張したものである。有限集合については、濃度は「元の個数」の同意語に過ぎない。。。.

新しい!!: 空間充填曲線と濃度 (数学) · 続きを見る »

曲線

数学における曲線(きょくせん、curve, curved line)は、一般にまっすぐとは限らない幾何学的対象としての「線」を言う。 つまり、曲線とは曲率が零とは限らないという意味での直線の一般化である。 数学の様々な分野において、その研究領域に応じたそれぞれやや異なる意味で「曲線」の語が用いられる(から、精確な意味は文脈に即して捉えるべきである)が、それらの意味の多くは以下に挙げる定義の特別な実例になっているはずである。すなわち、曲線とは局所的に直線と同相であるような位相空間を言う。それは日常語で言えば、曲線は点の集合であって、それらの点が十分近くであれば直線のように見えるが、変形があってもよいというような意味である。数学の各分野で扱われる。 最初に触れる曲線の簡単な例というのはほとんどの場合「平面曲線」(例えば平らな紙の上に描いた曲がった線)であろうが、螺旋のように三次元的なものもある。幾何学的な必要性や、例えば古典力学からの要請で任意次元の空間に埋め込まれた曲線の概念も必要とされる。一般相対論において世界線とは時空内の曲線である。; 注: 一般用語として、「曲線」が(成長曲線やフィリップス曲線の例に見るように)函数のグラフ、あるいはより多様なの意味で用いられることがあるが、本項で言う意味とは(近い関連はあるにせよ)異なるものと理解すべきである。.

新しい!!: 空間充填曲線と曲線 · 続きを見る »

ここにリダイレクトされます:

ペアノ空間平面充填曲線空間充填アルゴリズム空間充填直線空間充填関数空間被覆曲線

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »