ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ブール代数

索引 ブール代数

ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。.

20 関係: 可補束否定論理積二項演算ラダー・ロジックレイモンド・スマリヤンブール論理ブール関数デジタル回路ジョージ・ブールストーンの表現定理ソーンダース・マックレーン冪等環 (数学)論理回路集合集合の代数学排他的論理和束 (束論)数理論理学普遍代数学

可補束

可補束(英: Complemented lattice)とは、束論において、0 を最小元、1 を最大元とし、各元 x に補元 y が定義され、以下が成り立つ有界束をいう。.

新しい!!: ブール代数と可補束 · 続きを見る »

否定論理積

否定論理積(ひていろんりせき)とは、与えられた複数の命題のうちに偽であるものが含まれることを示す論理演算である。NANDと表記される。別の表記法として、Henry M. Shefferが1913年に導入したシェファーの棒記号(Sheffer stroke、記号 "|" で表す)や矢印の「↑」を用いる表記法もある。.

新しい!!: ブール代数と否定論理積 · 続きを見る »

二項演算

数学において、二項演算(にこうえんざん、binary operation)は、数の四則演算(加減乗除)などの 「二つの数から新たな数を決定する規則」 を一般化した概念である。二項算法(にこうさんぽう)、結合などともいう。.

新しい!!: ブール代数と二項演算 · 続きを見る »

ラダー・ロジック

ラダー図(自己保持回路) ラダー・ロジックまたはラダー言語(ラダーげんご)は論理回路を記述するための手法で、現在多くのプログラマブルロジックコントローラ(PLC)で採用されているプログラム言語である。ラダー図という場合もある。本来は、リレーによる論理回路を記述するために考案されたものである。ラダーという名前は、この言語のプログラムが2本の並行するレール(母線)とその間に渡されるラングによって梯子(ラダー)のように見えることに由来する。ラダー言語はハードウェア記述言語とは別のものと扱われている。.

新しい!!: ブール代数とラダー・ロジック · 続きを見る »

レイモンド・スマリヤン

レイモンド・メリル・スマリヤン(Raymond Merrill Smullyan、1919年5月25日 - 2017年2月6日)はアメリカ合衆国の数学者、ピアニスト、論理学者、老荘哲学者、奇術師。 ニューヨーク市のFar Rockawayに生れる。最初は奇術師をしていた。1955年にシカゴ大学から学士を得る。1959年にプリンストン大学から博士号を得る。アロンゾ・チャーチのもとで学んだ数多くの傑出した論理学者の一人。.

新しい!!: ブール代数とレイモンド・スマリヤン · 続きを見る »

ブール論理

ブール論理(ブールろんり、Boolean logic)は、古典論理のひとつで、その名称はブール代数ないしその形式化を示したジョージ・ブールに由来する。 リレーなどによる「スイッチング回路の理論」として1930年代に再発見され(論理回路#歴史を参照)、間もなくコンピュータに不可欠な理論として広まり、こんにちでは一般的に使われている。 本項目では、集合代数を用いて、集合、ブール演算、ベン図、真理値表などの基本的解説とブール論理の応用について解説する。ブール代数の記事ではブール論理の公理を満足する代数的構造の型を説明している。ブール論理はブール代数で形式化され2値の意味論を与えられた命題論理とみることができる。.

新しい!!: ブール代数とブール論理 · 続きを見る »

ブール関数

ブール関数(ブールかんすう、Boolean function)は、非負整数 k 個のブール領域 B.

新しい!!: ブール代数とブール関数 · 続きを見る »

デジタル回路

デジタル回路(デジタルかいろ。英: digital circuit - ディジタル回路)は、2つの不連続な電位範囲を情報の表現に用いる電子回路で、論理回路の実現法のひとつである。電位帯内であれば信号の状態は同じものとして扱われる。信号レベルが公差、減衰、ノイズなどで若干変動したとしても、しきい値の範囲内ならば無視され、いずれかの状態として扱われる。 通常は2つの状態をとり、0Vに近い電圧と、十分にマージンを取った電源電圧より低い5Vや3V、1.2Vといった電圧で表される。これらはそれぞれ「Low」「High」、又は「L」「H」と表現される。一般には Low を0や偽、High を1や真に対応させることが多い(正論理)が、諸事情により逆に対応させる(負論理)こともある。以上はトランジスタベースの現在広く使われている回路の場合で、真空管による回路など、電圧や方式は他にも多種ある。.

新しい!!: ブール代数とデジタル回路 · 続きを見る »

ジョージ・ブール

ョージ・ブール(George Boole, 1815年11月2日 - 1864年12月8日)は、イギリスの数学者・哲学者。多くの仕事があるが、こんにちのコンピュータ科学の分野の基礎的な理論のひとつであるブール代数(ブール論理)が現代では広く知られている。.

新しい!!: ブール代数とジョージ・ブール · 続きを見る »

ストーンの表現定理

数学において、ブール代数に対するストーンの表現定理(ストーンのひょうげんていり、Stone's representation theorem)は、任意のブール代数が何らかの集合代数 (field of sets) に同型であることを述べるものである。この定理は20世紀前半に浮上してきたブール代数の深い理解にとって基本的である。この定理を初めて証明したのは であり、名称はこの業績に因むものである。ストーンはヒルベルト空間上の作用素のスペクトル論の研究によってこの定理を導いた。 この定理はストーン双対性の特殊な場合に当たる。.

新しい!!: ブール代数とストーンの表現定理 · 続きを見る »

ソーンダース・マックレーン

ーンダース・マックレーン ソーンダース・マックレーン(Saunders Mac Lane, 1909年8月4日 - 2005年4月14日)はアメリカの数学者。 コネチカット州タフトヴィル生まれ。ゲッティンゲン大学にてパウル・ベルナイスに師事し、1934年に博士号を取得。1947年シカゴ大学教授に就任し、1982年同大学名誉教授。また、アメリカ数学協会会長(1951年-1952年)、アメリカ数学会会長(1973年-1974年)を歴任した。2005年、サンフランシスコにて没。 サミュエル・アイレンベルグと共に圏論を創設したことで知られる。自ら著した“Categories for the Working Mathematician”(日本語訳タイトル『圏論の基礎』)は圏論に関する基礎的なテキストとなっている。.

新しい!!: ブール代数とソーンダース・マックレーン · 続きを見る »

冪等

数学において、冪等性(べきとうせい、idempotence 「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見られる特徴である。"idempotence" という単語はラテン語の "idem"(同じ.

新しい!!: ブール代数と冪等 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: ブール代数と環 (数学) · 続きを見る »

論理回路

論理回路(ろんりかいろ、logic circuit)は、論理演算を行う電気回路及び電子回路である。真理値の「真」と「偽」、あるいは二進法の「0」と「1」を、電圧の正負や高低、電流の方向や多少、位相の差異、パルスなどの時間の長短、などで表現し、論理素子などで論理演算を実装する。電圧の高低で表現する場合それぞれを「」「」等という。基本的な演算を実装する論理ゲートがあり、それらを組み合わせて複雑な動作をする回路を構成する。状態を持たない組み合わせ回路と状態を持つ順序回路に分けられる。論理演算の結果には、「真」、「偽」の他に「不定」がある。ラッチ回路のdon't care, フリップフロップ回路の禁止が相当する。 ここでの論理は離散(digital)であるためディジタル回路を用いる。論理演算を行うアナログ回路、「アナログ論理」を扱う回路(どちらも「アナログ論理回路」)もある。 多値論理回路も量子コンピュータで注目されている。 電気(電子)的でないもの(たとえば流体素子や光コンピューティングを参照)もある。 以下では離散なデジタル回路を扱う。.

新しい!!: ブール代数と論理回路 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: ブール代数と集合 · 続きを見る »

集合の代数学

集合の代数学(しゅうごうのだいすうがく、algebra of sets)は、集合の集まりを結び・交わり・補演算といった集合演算、集合の相等関係・包含関係のような二項関係などを持つ体系として捉えたものである。集合の代数学を考えることで、集合に関する基本的な性質・法則を明らかにし、これらの演算や関係に伴って必要となる式の評価や計算の実行に関して系統的な扱いができるようになる。.

新しい!!: ブール代数と集合の代数学 · 続きを見る »

排他的論理和

ベン図による排他的論理和P \veebar Q 排他的論理和(はいたてきろんりわ、)とは、ブール論理や古典論理、ビット演算などにおいて、2つの入力のどちらか片方が真でもう片方が偽の時には結果が真となり、両方とも真あるいは両方とも偽の時は偽となる演算(論理演算)である。XOR、EOR、EX-OR(エクスオア、エックスオア、エクソア)などと略称される。.

新しい!!: ブール代数と排他的論理和 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: ブール代数と束 (束論) · 続きを見る »

数理論理学

数理論理学(mathematische Logik、mathematical logic)は、論理学(形式論理学)の数学への応用の探求ないしは論理学の数学的な解析を主たる目的とする、数学の関連分野である。局所的には数理論理学は超数学、数学基礎論、理論計算機科学などと密接に関係している。数理論理学の共通な課題としては形式体系の表現力や形式証明系の演繹の能力の研究が含まれる。 数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。これらの領域はロジックのとくに一階述語論理や定義可能性に関する結果を共有している。計算機科学(とくに)における数理論理学の役割の詳細はこの記事には含まれていない。詳細はを参照。 この分野が始まって以来、数理論理学は数学基礎論の研究に貢献し、また逆に動機付けられてきた。数学基礎論は幾何学、算術、解析学に対する公理的な枠組みの開発とともに19世紀末に始まった。20世紀初頭、数学基礎論は、ヒルベルトのプログラムによって、数学の基礎理論の無矛盾性を証明するものとして形成された。クルト・ゲーデルとゲルハルト・ゲンツェンによる結果やその他は、プログラムの部分的な解決を提供しつつ、無矛盾性の証明に伴う問題点を明らかにした。集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。.

新しい!!: ブール代数と数理論理学 · 続きを見る »

普遍代数学

数学の一分野としての普遍代数学(ふへんだいすうがく、Universal algebra)あるいは一般代数学(いっぱんだいすうがく、general algebra)は、構造の「モデル」となる例についてではなく代数的構造そのものについて研究する分野である。例えば、その研究対象として個々の群を考えるのではなく群論そのものをその研究対象とするのである。.

新しい!!: ブール代数と普遍代数学 · 続きを見る »

ここにリダイレクトされます:

ブール束ブール環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »