ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

スピンエコー法

索引 スピンエコー法

ピンエコーのアニメーション。青で示されているブロッホ球中のスピン(赤矢印)の緑で示されているパルスシークエンスに対する応答を示している。 磁気共鳴におけるスピンエコー法(スピンエコーほう、spin echo、SE)は、歳差スピン磁化の共鳴放射パルスによるリフォーカスである。現代の核磁気共鳴 (NMR) ならびに核磁気共鳴画像法 (MRI) は、この効果に依存するところが大きい。 励起パルスの後に観測されるNMRシグナルは、スピン-スピン緩和ならびに異なるスピンが異なる速度で歳差運動する原因となる全ての「不均一」効果(例えば化学シフトの分布あるいは磁場勾配)によって時間とともに減衰する。緩和の結果として不可逆適な磁化の損失(デコヒーレンス)が起こるが、不均一な離調は磁化ベクトルを反転させる180°パルスあるいは「反転」パルスを適用することにより逆転させることができる。 現在最も一般的に用いられるパルス系列であり、90°パルス-180°パルスの組み合わせを一定間隔 (1TR) で連続的に印加する。均一静磁場中の核スピンに対して、まず90°パルスを印加し、巨視的磁化ベクトルをx-y平面上に倒す。90°パルス印加直後から、核スピンが定常状態に戻る緩和の過程で、巨視的磁化ベクトルはT2*の時定数で消失する自由誘導減衰 (FID) 信号を放出するが、この途中で、90°パルス印加からτ(TE/2)時間後に180°パルスを印加すると、各核スピンの角速度がキャンセルされ、τ時間後に、T2の時定数で求められる信号強度に該当するエコー信号が観測される。これがスピンエコーである。Short-TR&TEでT1強調画像を、Long-TR&TEでT2強調画像を得ることができる。スピン-格子緩和(spin-lattice relaxation)ともいう。 エコー現象は、レーザー分光法 やなどの磁気共鳴以外の分野での使用されるコヒーレント分光法の重要な要素である。エコーは最初1950年にによって核磁気共鳴において検出され 、スピンエコーは「ハーンエコー」と呼ばれることがある。核磁気共鳴や核磁気共鳴画像法の分野では、高周波照射が最も一般的に使用される。.

21 関係: 化学シフトラジアンパルスシーケンス分光法エドワード・ミルズ・パーセルスペクトル線スピンスピン-スピン緩和スピン角運動量回転座標系量子デコヒーレンス自由誘導減衰電磁波T1強調画像T2強調画像核磁気共鳴核磁気共鳴画像法歳差指数関数的減衰180度パルス90度パルス

化学シフト

核磁気共鳴における化学シフトとは、核スピン周囲の電子の空間的分布の違いにより、核スピンに働く見かけ上の静磁場や共鳴周波数が変化することをいう。.

新しい!!: スピンエコー法と化学シフト · 続きを見る »

ラジアン

ラジアン(radian、記号: rad)は、国際単位系 (SI) における角度(平面角)の単位である。円周上でその円の半径と同じ長さの弧を切り取る2本の半径が成す角の値と定義される。.

新しい!!: スピンエコー法とラジアン · 続きを見る »

パルスシーケンス

フーリエ変換NMRや核磁気共鳴画像法において、パルスシーケンスとはサンプルに照射した一連の高周波パルス磁場を表したものである。 フーリエ変換後は、シグナルは周波数領域のNMRスペクトルとして表すことができる。核磁気共鳴画像法では、磁場の切り替えによる、が使われ、これは空間依存勾配を示すのでフーリエ変換後の再構築に使われ、空間分解能がよい画像が得られる。 パルスシーケンスの結果はしばしば直積演算子を用いて解析される。.

新しい!!: スピンエコー法とパルスシーケンス · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: スピンエコー法と分光法 · 続きを見る »

エドワード・ミルズ・パーセル

ドワード・ミルズ・パーセル(Edward Mills Purcell, 1912年8月30日 – 1997年3月7日)は、アメリカ人の物理学者で、1946年に液体中、固体中での核磁気共鳴を単独で発見した功績により、1952年度のノーベル物理学賞を受賞した。核磁気共鳴は純物質や化合物の分子の構造を調べるのに広く用いられている。彼はまたLife at Low Reynolds Number(低レイノルズ数における生命)という有名な講演を行った生物学者としても知られている。.

新しい!!: スピンエコー法とエドワード・ミルズ・パーセル · 続きを見る »

スペクトル線

ペクトル線(Spectral line)とは、他の領域では一様で連続な光スペクトル上に現れる暗線または輝線である。狭い周波数領域における光子数が、隣接周波数帯に比べ少ない、あるいは多いために生じる。.

新しい!!: スピンエコー法とスペクトル線 · 続きを見る »

スピン

ピン (spin)は、英語で自転を指す語。糸などの繊維を紡ぐことも意味する。 スピン(Spin).

新しい!!: スピンエコー法とスピン · 続きを見る »

スピン-スピン緩和

核磁気共鳴(NMR)や核磁気共鳴画像法(MRI)において、スピン-スピン緩和(スピン スピンかんわ、spin-spin relaxation)、または横緩和(よこかんわ)、T2緩和とは、磁化ベクトルの横軸成分 M が指数関数的に減衰して平衡値である0になっていく過程のことである。この過程はスピン-スピン緩和時間または横緩和時間と呼ばれる時定数 T によって特徴づけられる。磁化ベクトルの緩和には、他にもスピン-格子緩和(縦緩和)がある(詳細は核磁気共鳴#緩和を参照)。 スピン-スピン緩和時間 T は、縦磁化ベクトルが静磁場に垂直な方向へと倒された直後の磁気共鳴信号: が、37%(つまり1/e)まで小さくなるのにかかる時間である。 一般的に横緩和は、縦緩和よりも速く回復する。また異なるサンプルや異なる生物組織では異なる横緩和時間 T を持っている。たとえば、流体はプロトンよりも遥かに横緩和時間が長い。アモルファス固体はミリ秒オーダーの T を持つ一方、結晶固体ではおよそ1/20 ms程度である。.

新しい!!: スピンエコー法とスピン-スピン緩和 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: スピンエコー法とスピン角運動量 · 続きを見る »

回転座標系

回転座標系(かいてんざひょうけい)とは、運動座標系の一種で、慣性系から見るとある軸に対して回転している非慣性系の座標系をいう。たとえば地球表面は地軸に対して回転する座標系である。 例としてz 軸まわりに角速度ωで回転する回転座標系 (x', y', z') を考える。慣性系 (x, y, z) と回転座標系 (x', y', z') が時刻t.

新しい!!: スピンエコー法と回転座標系 · 続きを見る »

量子デコヒーレンス

量子デコヒーレンス(りょうしデコヒーレンス)は、量子系の干渉が環境との相互作用によって失われる現象。デコヒーレンス。.

新しい!!: スピンエコー法と量子デコヒーレンス · 続きを見る »

自由誘導減衰

ム調整されたサンプルの自由誘導減衰 (FID) 核磁気共鳴 (NMR) シグナル フーリエ変換NMRにおける自由誘導減衰(じゆうゆうどうげんすい、free induction decay, FID)は、磁場中の(通常z軸に沿った)非平衡核スピン磁化歳差運動によって生成する可観測のNMRシグナルである。この非平衡磁化は、一般的に核スピンのラーモア周波数に近い共鳴高周波のパルスを印加することによって誘導することができる。 もし磁化ベクトルがxy平面中に非ゼロ成分を有していると、歳差磁化はサンプル周辺の検出コイルにおいて対応する発振電圧を誘導する。この時間領域シグナルは通常デジタイズされ、次にNMRシグナルの周波数スペクトルすなわちNMRスペクトルを得るためにフーリエ変換される。 NMRシグナルの持続時間は、究極的にはスピン-スピン緩和によって制限されるが、異なるNMR周波数間の相互干渉もまたシグナルのより素早い減衰の原因となる。溶液サンプルを用いたNMRの場合など、NMR周波数がよく分離している時は、FIDの全体の減衰は緩和支配であり、FIDはおおよそ指数関数である(時定数T2あるいはより正確にはT2*)。時間の関数としての磁化のy軸成分は以下の式で表わされる。 MはRFパルスの瞬間に存在する磁化の成分、νLはラーモア周波数、tは経過時間である。 共鳴周波数が化学シフトの分(Δv)だけ中心周波数からずれたFID信号をフーリエ変換すると となる。実部はローレンツ型の吸収曲線、虚部は分散曲線となっている。 FIDの持続時間は1Hといった核では秒単位である。もし固体NMRの場合のようにNMRの線形が緩和支配でない場合は、NMRシグナルは一般的により早く、例えば1H NMRではマイクロ秒で減衰する。 特にもしごく限られた周波数成分しか存在しなければ、FIDは水素を含む航空燃料、乳製品の固体と液体の比といったサンプルの物理学的性質を定量的に決定するために、直接解析される(時間領域NMR)。.

新しい!!: スピンエコー法と自由誘導減衰 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: スピンエコー法と電磁波 · 続きを見る »

T1強調画像

T1強調画像(T1きょうちょうがぞう、T1 weighted image, T1WI)は核磁気共鳴画像法 (MRI) で用いられるスピンエコー法(SE法)で得られる画像の一種である。 スピンエコー法ではTR (、ラジオ波パルスを与える間隔)、TE (、ラジオ波パルスを検出するまでの時間)が信号強度と関係しており、TRが組織のT1値よりも短ければ、各組織のT1の違いが画像に反映される。さらにTEがT2値よりも非常に短ければ、各組織のT2の影響が少ない画像が得られる。このようにTR、TEともに短い条件では、各組織のT1の差が強くでる画像が得られ、これをT1強調画像とよぶ。.

新しい!!: スピンエコー法とT1強調画像 · 続きを見る »

T2強調画像

T2強調画像(T2きょうちょうがぞう、T2 weighted image, T2WI)は核磁気共鳴画像法 (MRI) で用いられるスピンエコー法(SE法)で得られる画像の一種である。 スピンエコー法において、TRをすべての組織のスピンが元に戻るほど長く設定すれば、各組のT1の違いは画像に反映されない。逆にTEを長く設定すると、各組織のT2の違いが画像に反映されるようになる。したがってTR、TEともに長い条件では、各組織のT2の差が強くでる画像が得られ、これをT2強調画像とよぶ。.

新しい!!: スピンエコー法とT2強調画像 · 続きを見る »

核磁気共鳴

核磁気共鳴(かくじききょうめい、nuclear magnetic resonance、NMR) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。.

新しい!!: スピンエコー法と核磁気共鳴 · 続きを見る »

核磁気共鳴画像法

頭部のMRI(T1)画像 頭の頂部から下へ向けて連続撮影し、動画化したもの 核磁気共鳴画像法(かくじききょうめいがぞうほう、, MRI)とは、核磁気共鳴(, NMR)現象を利用して生体内の内部の情報を画像にする方法である。磁気共鳴映像法とも。.

新しい!!: スピンエコー法と核磁気共鳴画像法 · 続きを見る »

歳差

歳差(さいさ、precession)または歳差運動(さいさうんどう)とは、自転している物体の回転軸が、円をえがくように振れる現象である。歳差運動の別称として首振り運動、みそすり運動、すりこぎ運動などの表現が用いられる場合がある。.

新しい!!: スピンエコー法と歳差 · 続きを見る »

指数関数的減衰

指数関数的減衰(しすうかんすうてきげんすい、exponential decay)、または指数的減衰とは、ある量が減少する速さが減少する量に比例することである。数学的にいえば、この過程は微分方程式 によって表される。ここでN (t) は時刻t における減衰する量であり、λは崩壊定数と呼ばれる正の数である。崩壊定数の単位は s-1 である。 この微分方程式を解くと(詳細は後述)、この現象は指数関数 によって表される。ここでN0.

新しい!!: スピンエコー法と指数関数的減衰 · 続きを見る »

180度パルス

180度パルス(180どパルス180-degree pulse)とは、MRIまたはNMRの観測において、磁化ベクトルの方向をちょうど180°回転させるのに等しいRFパルスのこと。ある均一静磁場中に置かれた核スピンの巨視的磁化ベクトルの向きを、z軸のプラス方向からマイナス方向に180°倒したり、x-y平面上の横磁化成分を180°反転させる。 スピンエコー法では、90°パルス付加後に外部磁場の不均一で起こる位相ずれをリフェーズさせる作用がある。.

新しい!!: スピンエコー法と180度パルス · 続きを見る »

90度パルス

MRIまたはNMRの観測における90度パルス(90どパルス、90-degree pulse)とは、磁化ベクトルの方向を回転座標系から見てちょうど90°回転させるRFパルスのこと。ある均一磁場中に置かれた核スピンの巨視的磁化ベクトルの向きを、z軸方向からx-y平面上に90°倒すためのRFパルス。 実験室座標系から見ると、磁化ベクトルはらせん軌道を描きながらx-y平面上に倒れる。.

新しい!!: スピンエコー法と90度パルス · 続きを見る »

ここにリダイレクトされます:

スピンエコー

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »