ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

クロロトリフルオロメタン

索引 クロロトリフルオロメタン

トリフルオロメタン(Chlorotrifluoromethane)は、不燃性、不腐食性のクロロフルオロカーボン(HCFC)の一種である。冷媒として用いられたが、オゾン破壊への懸念により、モントリオール議定書の締結後は使用量が減少している。.

14 関係: 密度三重点二酸化炭素圧縮率因子モントリオール議定書トリクロロフルオロメタンフロン類冷媒粘度熱容量蒸発熱臨界点比熱比温室効果ガス

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: クロロトリフルオロメタンと密度 · 続きを見る »

三重点

純物質の三重点(さんじゅうてん、triple point)とは、その物質の三つの相が共存して熱力学的平衡状態にある温度と圧力である。三相を指定しないで単に三重点というときには、気相、液相、固相の三相が共存して平衡状態にあるときの三重点を指す。水を例にとるならば、水蒸気、水、氷が共存する温度、圧力が水の三重点である。.

新しい!!: クロロトリフルオロメタンと三重点 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: クロロトリフルオロメタンと二酸化炭素 · 続きを見る »

圧縮率因子

圧縮率因子(あっしゅくりついんし、compressibility factor)は実在気体の振る舞いに関して、理想気体からのずれを表す無次元量のひとつである。圧縮因子あるいは圧縮係数ともいう。 1モルの実在の気体または理想気体について、P 、V 、n 、T をそれぞれその気体が受ける圧力、体積、モル数、温度とすると圧縮率因子 z は次のように表される。 ここで R は気体定数である。また、Vm は気体分子のモル体積、 V は理想気体としてプロットしたモル体積である(便宜上、前者をモル体積、後者を理想のモル体積と呼ぶことにする)。 モル体積と理想のモル体積の商をビリアル展開することでz を求める方法もある(詳細はビリアル方程式を参照)。 z は圧力 P に対してプロットすると物質固有の曲線になる。一般に十分低圧では1より小さく、十分高圧では1より大きくなる。これは実在気体では無視できない分子間力と分子自体の体積の2つの影響によるものである。z を対臨界定数P およびT の関数で表したのがz 線図で、気体の種類に関係なく適用できる。 理想気体では より圧縮率因子の値は常にz.

新しい!!: クロロトリフルオロメタンと圧縮率因子 · 続きを見る »

モントリオール議定書

ゾン層を破壊する物質に関するモントリオール議定書(オゾンそうをはかいするぶっしつにかんするモントリオールぎていしょ、英:Montreal Protocol on Substances that Deplete the Ozone Layer)は、ウィーン条約(オゾン層の保護のためのウィーン条約)に基づき、オゾン層を破壊するおそれのある物質を指定し、これらの物質の製造、消費および貿易を規制することを目的とし、1987年にカナダで採択された議定書。 略称は、モントリオール議定書。事務局はケニアのナイロビにある国連環境計画(UNEP)。 1987年に採択。1989年に発効。毎年、議定書の締約国会議が開かれ、1990年(ロンドン改正)、1992年(コペンハーゲン改正)、1997年(モントリオール改正)、1999年(北京改正)、2016年(キガリ改正)と段階的に規制強化が図られている。 この議定書により、特定フロン、ハロン、四塩化炭素などは、先進国では1996年までに全廃(開発途上国は2015年まで)、その他の代替フロンも先進国は、2020年までに全廃(開発途上国は原則的に2030年まで)することが求められた。 日本では1988年に、「オゾン層保護法」を制定し、フロン類の生産および輸入の規制を行っている。.

新しい!!: クロロトリフルオロメタンとモントリオール議定書 · 続きを見る »

トリクロロフルオロメタン

トリクロロフルオロメタン (trichlorofluoromethane) は分子式 CCl3F で表されるフロン類の一種で、フロン11、CFC-11、R-11とも表記される。においのほとんどない無色の液体で、室温付近で沸騰する。 1992年のモントリオール議定書締結国際会議において製造禁止とされている物質で、日本政府のフロンガス規制対象である「特定フロンガス」にも指定されている。.

新しい!!: クロロトリフルオロメタンとトリクロロフルオロメタン · 続きを見る »

フロン類

フロン類(フロンるい)は、炭素と水素の他、フッ素や塩素や臭素などハロゲンを多く含む化合物の総称。場合によって指す物質の範囲は異なる。 冷媒や溶剤として20世紀中盤に大量に使用されたが、オゾン層破壊の原因物質ならびに温室効果ガスであることが明らかとなり、今日ではモントリオール議定書をはじめ様々な国際協定・法律によって、先進国を中心に使用には大幅な制限がかけられている。 フロンという呼び方は、日本でつけられた俗称である。日本以外ではデュポン社の商品名であり、商標のフレオン (freon) で呼ばれることが多い。.

新しい!!: クロロトリフルオロメタンとフロン類 · 続きを見る »

冷媒

冷媒(れいばい、)とは、冷凍サイクルにおいて熱を移動させるために用いられる熱媒体のことを言う。.

新しい!!: クロロトリフルオロメタンと冷媒 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: クロロトリフルオロメタンと粘度 · 続きを見る »

熱容量

熱容量(ねつようりょう、heat capacity)とは、系に対して熱の出入りがあったとき、系の温度がどの程度変化するかを表す状態量である。 単位はジュール毎ケルビン(J/K)が用いられる。.

新しい!!: クロロトリフルオロメタンと熱容量 · 続きを見る »

蒸発熱

蒸発熱(じょうはつねつ、heat of evaporation)または気化熱(きかねつ、heat of vaporization)とは、液体を気体に変化させるために必要な熱のことである。気化熱は潜熱の一種であるので、蒸発潜熱または気化潜熱ともいう。固体を気体に変化させるために必要な熱は昇華熱(しょうかねつ、heat of sublimation)または昇華潜熱という『新物理小事典』「気化熱」。。単に気化熱というときは液体の蒸発熱を指すことが多いが、液体の蒸発熱と固体の昇華熱を合わせて気化熱ということもある。以下この項目では、便宜上、液体の気化熱を蒸発熱と呼び、液体の蒸発熱と固体の昇華熱を合わせて気化熱と呼ぶ。 固体や液体が気体に変化する現象を気化という。気化にはエネルギーが必要である。物質が気化するとき、多くの場合、気化に必要なエネルギーは熱として物質に吸収される。多くのエアコンや冷蔵庫で、この吸熱作用を利用したヒートポンプという技術が使われている。 気化に必要なエネルギーは物質により異なる。データ集などでは、物質 1 キログラム当たりの値または物質 1 モル当たりの値が気化熱として記載されている。単位はそれぞれ kJ/kg (キロジュール毎キログラム)および kJ/mol (キロジュール毎モル)である。例えば 25 ℃ における水の蒸発熱は 2442 kJ/kg であり 44.0 kJ/mol である平衡蒸気圧の下での値。特記ない限り本文中の蒸発熱は次のサイトに依る: 。気化熱の大きさは、同じ物質でも気化する状況により変わる。通常は、1 気圧における沸点での値か、25 ℃ における平衡蒸気圧での値が物質の蒸発熱としてデータ集に記載されている本文中で引用した蒸発熱の値は、とくに断らない限り、1 気圧における沸点での値である。。例えば 1 気圧、100 ℃ の水の蒸発熱は 2257 kJ/kg であり、飽和水蒸気圧(32 hPa)の下での 25 ℃ の蒸発熱 2442 kJ/kg より1割近く減少する。 気体が液体に変化するときに放出される凝縮熱(ぎょうしゅくねつ、heat of condensation)の値は、同じ温度と同じ圧力の蒸発熱の値に符号も含めて等しい。 モル当たりの蒸発熱は、液体中で分子の間に働く引力に、分子が打ち勝つためのエネルギーであると解釈される。たとえばヘリウムの蒸発熱が 0.08 kJ/mol と極端に小さいのは、ヘリウム原子の間に働くファンデルワールス力が非常に弱いためである。 それに対して、液体中の分子の間に水素結合が働いていると、水やアンモニアのように蒸発熱が大きくなる。金属のモル当たりの昇華熱は、金属結合で結ばれた 1 モルの金属結晶の塊をバラバラにして 6.02×1023 個の原子にするのに必要なエネルギーに相当する。遷移金属の昇華熱は、数百キロジュール毎モルの程度である。.

新しい!!: クロロトリフルオロメタンと蒸発熱 · 続きを見る »

臨界点

純物質の臨界点(りんかいてん、critical point)とは、気相 - 液相間の相転移が起こりうる温度および圧力の上限である。気体の温度を臨界点以下にしない限り、どれだけ圧縮しても気体は決して液化しない。また、臨界点より高い圧力の下では、どんなに加熱しても液体は決して沸騰しない。 純物質の臨界点は各物質に固有の値である。例えば水の臨界点は, である。臨界点の温度をその物質の臨界温度 、圧力を臨界圧力 という。物質の沸点 純物質の沸点と蒸気圧は各物質に固有の値ではなく、それぞれ圧力と温度により変化する。 は臨界温度以上にはならない。すなわち臨界温度は沸点の上限である()。同様に、臨界圧力はその物質の蒸気圧 の上限である()。臨界点における物質の密度を臨界密度 、モル体積を臨界体積 という。 水の臨界密度は 0.322±0.003 g/cm3 である。この値は常温常圧の水の密度の約1/3であり、水蒸気を理想気体と仮定したときの臨界点での密度の4.4倍である。 温度 を横軸、圧力 を縦軸とした相図では、気-液境界線(右図の青線)の右端の点が臨界点にあたる。すなわち蒸気圧曲線の右端の点が臨界点である。臨界点より低い温度・圧力で気液平衡にあるとき、気体の密度 は液体の密度 よりも小さい。気液平衡を保ちながら蒸気圧曲線に沿って温度 を上げていくと、気体の密度は増加し、液体の密度は減少する。臨界点に近づくにつれて二つの密度の差はますます小さくなり、 の極限で密度の差がなくなって となる。これは液相と気相の二相が平衡状態で境界面がある状態から、二相の密度が等しくなりその境界面がなくなる状態に変化することを意味している。また臨界点では、密度だけでなく、他の示強性の状態量も等しくなる。そのため、気-液境界線上の気相と液相のモルエンタルピー(または比エンタルピー)単位物質量あたり(または単位質量あたり)のエンタルピー。の差として定義される気化熱は、臨界点で 0 となる。すなわち蒸気圧曲線の右端の点は、気化熱が 0 となる点である。 臨界温度以下の気体を蒸気と呼ぶ。純物質の蒸気は等温的に圧縮すると相転移を起こして液化する。物質の温度と圧力を共に臨界点以上にすると、液体と気体の区別がつかない状態になる。この状態の流体を超臨界流体と呼ぶ。相図上で、臨界点を迂回する形で物質の状態を変化させると、密度が連続的に変化するような、蒸気⇔液体の変化が可能である。例えば、蒸気を を超えるまで定圧で加熱し、これを加圧して超臨界流体にしてから、 を下回るまで定圧で冷却すると液体になる。この一連の過程で相転移は起こらず、物質の状態は連続的に変化している。 固相と液相の間に、超高圧のもとで区別がなくなるような臨界点があるかどうかは未解明である。固相と液相の間の臨界点は、2015年現在、実験的に観測されたことがない。結晶は液体と対称性が違うのでガラスのような非晶質は液体と同じ対称性を持つ。、多くの研究者は、固体と液体の区別がなくなるような状態は存在しないと考えている。固液臨界点が存在する可能性は、理論的に、または計算科学により示されている。.

新しい!!: クロロトリフルオロメタンと臨界点 · 続きを見る »

比熱比

比熱比(ひねつひ、heat capacity ratio)は定圧熱容量と定積熱容量の比である。熱力学の解析に用いるのは、それぞれ1モルあたりの定圧熱容量(定圧比熱)、定積熱容量(定積比熱)の比であり、通常 \gamma または \kappa と表示される。 ただし工業的には、MKS系に単位換算された値を用いるのが一般的である。モルと kg の換算には、炭素12を基準とした炭素スケールが用いられる。 断熱圧縮膨張時の圧力P と体積V の関係は、比熱比を用いて次のように表される(ポアソンの法則)。 下表に示すように、気体の比熱容量、比熱比は、分子の構造によって決まる(エントロピーにおける分子の運動エネルギーには回転運動も含むためその差が比熱比の差になり現れる)。.

新しい!!: クロロトリフルオロメタンと比熱比 · 続きを見る »

温室効果ガス

温室効果ガスと排出源の内訳 fast track 2000 project (2000年) 温室効果ガス(おんしつこうかガス、、)とは、大気圏にあって、地表から放射された赤外線の一部を吸収することにより、温室効果をもたらす気体の総称である。対流圏オゾン、二酸化炭素、メタンなどが該当する。近年、大気中の濃度を増しているものもあり、地球温暖化の主な原因とされている。.

新しい!!: クロロトリフルオロメタンと温室効果ガス · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »