ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

Sinc関数

索引 Sinc関数

正規化sinc(青) と非正規化sinc(赤)。−6π ≤ ''x'' ≤ 6π sinc 関数(ジンクかんすう、シンクかんすう)は、正弦関数をその変数で割って得られる初等関数である。sinc(x), Sinc(x), sinc x などで表される。.

26 関係: 基底関数可除特異点三角関数ランダウの記号リサンプリングボールウェイン積分デジタル-アナログ変換回路デジタル信号処理フーリエ変換フィルタ回路初等関数アンチエイリアスウェーブレット変換クロネッカーのデルタスケール因子内挿矩形関数矩形波特殊関数直交解析関数関数の台標本化定理指数積分数学整数

基底関数

基底関数(きていかんすう、basis function)とは、関数空間の基底ベクトルのことである。すなわち対象となる空間に属する全ての元(関数)は、この基底関数の線型結合で表される。 線形基底展開(linear basis expansion)とは、h_m(X) を基底関数として、下記の形で展開する事。 例えば、実数値関数のフーリエ変換(コサイン変換・サイン変換)ではコサイン関数もしくはサイン関数、ウェーブレット変換ではウェーブレット関数とスケーリング関数、スプライン曲線では区分的多項式が基底関数として用いられる。.

新しい!!: Sinc関数と基底関数 · 続きを見る »

可除特異点

複素解析学における可除特異点(かじょとくいてん、removable singularity)、除去可能な特異点、あるいは見かけの特異点 (cosmetic singularity) とは、その点において定義されない正則函数に対してその点での値を適当に定めれば、延長された函数がその点の近傍において正則となるようにすることができるような点をいう。 例えば函数 は z.

新しい!!: Sinc関数と可除特異点 · 続きを見る »

三角関数

三角関数(さんかくかんすう、trigonometric function)とは、平面三角法における、角の大きさと線分の長さの関係を記述する関数の族および、それらを拡張して得られる関数の総称である。三角関数という呼び名は三角法に由来するもので、後述する単位円を用いた定義に由来する呼び名として、円関数(えんかんすう、circular function)と呼ばれることがある。 三角関数には以下の6つがある。.

新しい!!: Sinc関数と三角関数 · 続きを見る »

ランダウの記号

ランダウの記号(ランダウのきごう、Landau symbol)は、関数の極限における値の変化度合いに、おおよその評価を与えるための記法である。 ランダウの漸近記法 (asymptotic notation)、ランダウ記法 (Landau notation) あるいは主要な記号として O (オーもしくはオミクロン Ο。数字の0ではない)を用いることから(ランダウの)O-記法、ランダウのオミクロンなどともいう。 記号 O は「程度」の意味のオーダー(Order)から。 なおここでいうランダウはエドムント・ランダウの事であり、『理論物理学教程』の著者であるレフ・ランダウとは別人である。 ランダウの記号は数学や計算機科学をはじめとした様々な分野で用いられる。.

新しい!!: Sinc関数とランダウの記号 · 続きを見る »

リサンプリング

リサンプリング (英:resampling)、再標本化(さいひょうほんか)は、ある標本点系列でサンプリングされた信号を、別の標本点系列でサンプリングされた信号に変換すること。 通常はデジタル信号間の変換だが、サンプリングされていればアナログ信号でもかまわない。音声のような1次元信号に対してもビットマップ画像のような2次元信号に対しても使われ、基本原理は同じだが、用途は異なる。.

新しい!!: Sinc関数とリサンプリング · 続きを見る »

ボールウェイン積分

数学において、ボールウェイン積分は関数 sinc(ax) の積の積分である。ただし、ここでsinc(x)はsinc関数であり、0でないxに対しては sinc(x).

新しい!!: Sinc関数とボールウェイン積分 · 続きを見る »

デジタル-アナログ変換回路

デジタル-アナログ変換回路(デジタル-アナログへんかんかいろ、D/A変換回路 digital to analog converter)は、デジタル電気信号をアナログ電気信号に変換する電子回路である。D/Aコンバーター(DAC(ダック))とも呼ばれる。 また、デジタル-アナログ変換(デジタル-アナログへんかん、D/A変換)は、デジタル信号をアナログ信号に変換することをいう。 逆はアナログ-デジタル変換回路である。集積回路化されている。.

新しい!!: Sinc関数とデジタル-アナログ変換回路 · 続きを見る »

デジタル信号処理

デジタル信号処理(デジタルしんごうしょり、Digital Signal Processing、DSPと略されることもある)とは、デジタル化された信号すなわちデジタル信号の信号処理のことである。分野としては、これとアナログ信号処理は信号処理の一部である。この分野の大きな研究・応用領域に音響信号処理、デジタル画像処理、音声処理の三つがある。 目的は実世界の連続的なアナログ信号を計測し、選別することである。その第一段階は一般にアナログ-デジタル変換回路を使って信号をアナログからデジタルに変換することである。また、最終的な出力は別のアナログ信号であることが多く、そこではデジタル-アナログ変換回路が使用される。 処理可能な信号のサンプリングレートを稼ぐ目的に特化したプロセッサを使うことが多い。デジタルシグナルプロセッサという特化型のマイクロプロセッサが使われ、よくDSPと略される。このプロセッサは、典型的な汎用プロセッサに見られる多種多様な機能の内の幾つかを除外し、新たに高速乗算器、積和演算器を搭載している。従って、同程度のトランジスタ個数の汎用プロセッサと比較した場合、条件分岐等の処理では効率が悪化するが、信号を構成するサンプルデータは高効率で処理する事が可能になる。.

新しい!!: Sinc関数とデジタル信号処理 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: Sinc関数とフーリエ変換 · 続きを見る »

フィルタ回路

フィルタ回路(フィルタかいろ)とは、入力された電気信号に帯域制限をかけたり、特定の周波数成分を取り出すための電気回路(または電子回路)、つまりフィルタの役割をする電気回路のことを言う。濾波器(ろはき)ともいう。.

新しい!!: Sinc関数とフィルタ回路 · 続きを見る »

初等関数

初等関数(しょとうかんすう、)とは、実数または複素数の1変数関数で、代数関数、指数関数、対数関数、三角関数、逆三角関数および、それらの合成関数を作ることを有限回繰り返して得られる関数のことである。ガンマ関数、楕円関数、ベッセル関数、誤差関数などは初等関数でない。初等関数のうちで代数関数でないものを初等超越関数という。双曲線関数やその逆関数も初等関数である。 初等関数の導関数はつねに初等関数になるが、初等関数の不定積分や初等関数を用いた微分方程式の解なども一般に初等関数にはならない。例えば、次の二つの不定積分 f(x).

新しい!!: Sinc関数と初等関数 · 続きを見る »

アンチエイリアス

アンチエイリアス (anti-aliasing) は、サンプリングやダウンサンプリングでエイリアシングが起きないようにするための処理。画像に対して行なうと、ジャギー(ピクセルのギザギザ)が目立たなくなる。.

新しい!!: Sinc関数とアンチエイリアス · 続きを見る »

ウェーブレット変換

ウェーブレット変換(ウェーブレットへんかん、wavelet transformation)は、周波数解析の手法の一つ。基底関数として、ウェーブレット関数を用いる。フーリエ変換によって周波数特性を求める際に失われる時間領域の情報を、この変換においては残すことが可能である。フーリエ変換でも窓関数を用いる窓フーリエ変換で時間領域の情報は残せたが、窓幅を周波数に合わせて固定する必要があるため、広い周波数領域の解析には向かなかった。ウェーブレット変換では、基底関数の拡大縮小を行うので、広い周波数領域の解析が可能である。しかし、不確定性原理によって精度には限界がある。フーリエ変換では、N をデータのサイズとしたときに N logN のオーダーで計算量が増える(O(N logN))が、ウェーブレット変換では O(N) の計算量でできる利点がある。 VP6、JPEG 2000、信号解析、量子力学、フラクタル等の多くの分野に応用されている。.

新しい!!: Sinc関数とウェーブレット変換 · 続きを見る »

クロネッカーのデルタ

ネッカーのデルタ()とは、集合 T(多くは自然数の部分集合)の元 i, j に対して によって定義される二変数関数 δij: T×T → のことをいう。つまり、T×T の対角成分の特性関数のことである。名称は、19世紀のドイツの数学者レオポルト・クロネッカーに因む。 アイバーソンの記法を用いると と書ける。 単純な記号だが、色々な場面で有用である。例えば、単位行列は (δij) と書けたり、n 次元直交座標の基底ベクトルの内積は、(ei, ej).

新しい!!: Sinc関数とクロネッカーのデルタ · 続きを見る »

スケール因子

ール因子(スケールいんし、scale factor)あるいはスケールファクタとは、対象となるもののスケール、すなわち尺度を表す量である。ある対象の大きさを拡大したり縮小したりする操作はスケール変換と呼ばれるが、スケール因子とはあるスケール変換によって変換される対象の大小を表し、基準となるスケールに対する比によって表わされるものである。 スケールという考え方は幾何学的な描像に由来するが、スケール因子は分野を問わず様々な場面で用いられる。例えば経済学におけるコブ=ダグラス型生産関数は同次関数であり、引数にかかるスケール因子の振る舞いが重要となる。物理学においても、熱力学ポテンシャルが持つ示量性などは重要であり、例えばギブズ・デュエムの式はギブズの自由エネルギーの示量性、つまり一次同次性から得られる。また、物理学の特に基礎理論では、法則の普遍性や系の対称性が重要視され、ある現象を記述する基本的な方程式などが、特別な変換に対して対称性を持つこと、つまり変換の前後で形が変わらないことは、その現象の背景にある仕組みを知る手掛かりとして利用されている。スケール変換に対する普遍性もその中の大きなトピックの一つであり、そこから得られる結果として、ケプラーの法則やブラウン運動する粒子(あるいはより一般に、ランダムウォークする歩行者)の拡散速度に関する結論などが挙げられる。.

新しい!!: Sinc関数とスケール因子 · 続きを見る »

内挿

内挿(ないそう、、補間とも言う)とは、ある既知の数値データ列を基にして、そのデータ列の各区間の範囲内を埋める数値を求めること、またはそのような関数を与えること。またその手法を内挿法(補間法)という。内挿するためには、各区間の範囲内で成り立つと期待される関数と境界での振舞い(境界条件)を決めることが必要である。 最も一般的で容易に適用できるものは、一次関数(直線)による内挿(直線内挿)である。ゼロ次関数(ステップ関数)によってデータ列を埋めること(0次補間)を内挿と呼ぶことはあまりないが、内挿の一種である。 内挿と外挿(補外)とのアルゴリズムの類似性から、それぞれ内挿補間、外挿補間と誤って呼称されることがある。本来、補間と内挿は同義であり、内挿補間と重ねて呼ぶ必要はない。.

新しい!!: Sinc関数と内挿 · 続きを見る »

矩形関数

矩形関数 矩形関数(くけいかんすう、rectangular function)は、単関数の一種で、以下のように定義される関数である。 0 & \mbox |t| > \frac \\ \frac & \mbox |t|.

新しい!!: Sinc関数と矩形関数 · 続きを見る »

矩形波

三角波、のこぎり波の波形 矩形波(くけいは、Square wave)とは非正弦波形の基本的な一種であり、電子工学や信号処理の分野で広く使われている。理想的な矩形波は2レベルの間を規則的かつ瞬間的に変化するが、その2レベルにはゼロが含まれることも含まれないこともある。方形波とも呼ばれる。.

新しい!!: Sinc関数と矩形波 · 続きを見る »

特殊関数

特殊関数(とくしゅかんすう、special functions)は、何らかの名前や記法が定着している関数であり、解析学、関数解析学、物理学、その他の応用分野でよく使われる関数であることが多い。 何が特殊関数であるかのはっきりした定義は存在しないが、しばしば特殊関数として扱われるものには、ガンマ関数、ベッセル関数、ゼータ関数、楕円関数、ルジャンドル関数、超幾何関数、ラゲール多項式、エルミート多項式などがある。一般には初等関数の対義語ではなく、ある関数が初等関数であって同時に特殊関数とされる場合もある。.

新しい!!: Sinc関数と特殊関数 · 続きを見る »

直交

初等幾何学における直交(ちょっこう、orthogonal)は「垂直に交わる」こと、すなわちユークリッド空間内の交わる二つの直線や平面のなす角が直角であることを意味する。 このことは、直線と曲線または曲線同士、あるいは平面と曲面または曲面同士、もしくは曲線と曲面などの場合にも、交点において曲線の接線(または法線)あるいは曲面の接平面(または法線)などを考えることにより拡張できる。すなわち接線同士(または法線同士)の直交を以って二つの曲線の直交を定義するのである。注意すべきこととして、これら対象の直交性をベクトルによって定めるならば、(ベクトルは平行移動不変であるから)直交するそれらの対象は必ずしも「交わらない」。また非標準的な内積に関する直交性を考えるならば、直交するふたつのベクトルは必ずしも直角を成さない。 解析学や線型代数学に属する各分野を含め、直交性の概念は数学において広範に一般化して用いられる。.

新しい!!: Sinc関数と直交 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: Sinc関数と解析関数 · 続きを見る »

関数の台

数学における、ある函数の台(だい、)とは、その函数の値が 0 とならない点からなる集合、あるいはそのような集合の閉包のことを言う。この概念は、解析学において特に幅広く用いられている。また、何らかの意味で有界な台を備える函数は、様々な種類の双対に関する理論において主要な役割を担っている。.

新しい!!: Sinc関数と関数の台 · 続きを見る »

標本化定理

標本化定理(ひょうほんかていり、sampling theorem: サンプリング定理とも)はアナログ信号をデジタル信号へと変換する際に、どの程度の間隔で標本化(サンプリング)すればよいかを定量的に示す定理。情報理論の分野において非常に重要な定理の一つである。 標本化定理は1928年にハリー・ナイキストによって予想され、1949年にクロード・E・シャノンと日本の染谷勲によってそれぞれ独立に証明された。そのためナイキスト定理、ナイキスト・シャノンの定理、シャノン・染谷の定理とも呼ばれる。.

新しい!!: Sinc関数と標本化定理 · 続きを見る »

指数積分

数学において、指数積分(exponential integral) は指数関数を含む積分によって定義される関数である。 である。この被積分関数は原点 で発散するが、実関数としての指数積分はコーシーの主値を用いる。 &\operatorname(x).

新しい!!: Sinc関数と指数積分 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: Sinc関数と数学 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: Sinc関数と整数 · 続きを見る »

ここにリダイレクトされます:

Sincシンク関数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »