ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

電界放出

索引 電界放出

電界放出(または電界電子放出、Field Emission、FE)とは,物体表面に強い電界を加えることでポテンシャル障壁を薄くし,トンネル効果によって表面を抜けた電子を外部へ放出する現象のことである。 物質表面に電場が加わると、ショットキー効果によって仕事関数が減少する。 電場をさらに大きくし、表面近傍(10Å程度以下)の空間の仕事関数がフェルミ準位以下になると、トンネル効果によって金属内の電子が常温でも外部に放出される。 一般的に、電界放出は温度に依存しない。 電界放出による電流密度Jは、物質による定数C、D(Dは主に仕事関数により決まる)を用いて次のように表される。.

9 関係: 仕事関数トンネル効果フェルミ準位ショットキー効果走査型電子顕微鏡電場電子電界放出ディスプレイ電流密度

仕事関数

仕事関数(しごとかんすう、work function)は、物質表面において、表面から1個の電子を無限遠まで取り出すのに必要な最小エネルギーのこと。.

新しい!!: 電界放出と仕事関数 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: 電界放出とトンネル効果 · 続きを見る »

フェルミ準位

フェルミ準位とは電子の全化学ポテンシャル(または電子の電気化学ポテンシャル)のことで、通常 または と表記される。物質のフェルミ準位は熱力学的な量であり、その意味は1つの電子を物質に与えるのに必要な熱力学的仕事である(電子を取り除くのに必要な仕事は考慮していない)。 バンド構造が電子的性質の決定にどのように関係しているか、電子回路において電圧と電荷の流れがどのように関係しているか、といったフェルミ準位の正確な理解は、固体物理学の理解に本質的である。固体のエネルギー準位を解析するために固体物理学で用いられるバンド構造理論においてフェルミ準位は、電子の仮想的なエネルギー準位だと考えることができ、熱力学的平衡においてこのエネルギー準位は「いかなる時間でも占有されている確率が50%」である。バンドエネルギー準位に関連するフェルミ準位の位置は、電子特性を決める重要な因子である。フェルミ準位は現実のエネルギー準位に必ずしも対応しておらず(絶縁体でのフェルミ準位はバンドギャップの中にある)、バンド構造の存在も必要としない。それにも関わらず、フェルミ準位は厳密に定義された熱力学的な量であり、フェルミ準位の差は電圧計で簡単に測定することができる。.

新しい!!: 電界放出とフェルミ準位 · 続きを見る »

ショットキー効果

ョットキー効果(ショットキーこうか、Schottky effect)は、導体表面に強い電界を与えることでポテンシャルエネルギー(ポテンシャル障壁)が低下し、熱電子が放出しやすくなる現象のこと。その名はヴァルター・ショットキーにちなむ。 外部から与えられた電界で、導体表面は電場によるポテンシャル障壁の低下が起こり、熱電子を放出するのに必要な熱エネルギーは低くなる。 要は、熱電子放出を電界によってアシストするものである。 そのため、熱エネルギーのみで電子を放出させるよりも、電界と熱エネルギーを組み合わせた方が電子を放出させるエネルギーは少なくて済み、同じ電流密度を得るための効率は後者の方が高い。 デバイスの低電力化や寿命の向上に繋がり、SEMやTEMといった電子顕微鏡の電子放出源に用いられている。.

新しい!!: 電界放出とショットキー効果 · 続きを見る »

走査型電子顕微鏡

走査型電子顕微鏡(そうさがたでんしけんびきょう、Scanning Electron Microscope、SEM)は電子顕微鏡の一種である。電子線を絞って電子ビームとして対象に照射し、対象物から放出される二次電子、反射電子(後方散乱電子、BSE)、透過電子、X線、カソードルミネッセンス(蛍光)、内部起電力等を検出する事で対象を観察する。通常は二次電子像が利用される。透過電子を利用したものはSTEM(走査型透過電子顕微鏡)と呼ばれる。 TEMでは主にサンプルの内部、SEMでは主にサンプル表面の構造を微細に観察する。.

新しい!!: 電界放出と走査型電子顕微鏡 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 電界放出と電場 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

新しい!!: 電界放出と電子 · 続きを見る »

電界放出ディスプレイ

電界放出ディスプレイ(でんかいほうしゅつディスプレイ、FED:Field Emission Display)とは画像表示デバイスの1つである。.

新しい!!: 電界放出と電界放出ディスプレイ · 続きを見る »

電流密度

電流密度(でんりゅうみつど)は、単位面積に垂直な方向に単位時間に流れる電気量(電荷)のことであり、電気量についての流束である。単位としては A/m² が用いられる。電気導体に電界 E が与えられたときの電流密度 J は、 である。ここに比例定数 σ は電気伝導率 あるいは導電率(conductivity)といい、単位は S/m である。電気伝導率の逆数 ρ.

新しい!!: 電界放出と電流密度 · 続きを見る »

ここにリダイレクトされます:

電界放射電界放射型電界電子放出

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »