ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

炭酸リチウム

索引 炭酸リチウム

炭酸リチウム(たんさんりちうむ、Lithium carbonate)は、化学式 Li2CO3 で表される無機化合物である。無色の塩であり、金属酸化物の製造において広く用いられている。.

33 関係: 単斜晶系双極性障害塩基塩化リチウム多形二酸化炭素化学式ヨウ化リチウムリチウムリチウムイオン二次電池フッ化リチウムアルミニウムガラスコバルト酸リチウムシリカセメント硫酸リチウム炎色反応炭酸塩炭酸水素塩無機化合物花火融剤臭化リチウム鉱石電解質電極水素化リチウム水酸化リチウム溶解度準安定状態

単斜晶系

単斜晶系の例:正長石 単斜晶系(たんしゃしょうけい、)は、7つの結晶系の1つ。対応するブラベー格子は、単純単斜格子・底心単斜格子の2種類。 結晶系は、3つのベクトルで表現できるが、単斜晶系では、直方晶系のように異なる長さのベクトルで表される。これらのベクトルは、底面が平行四辺形の直角柱を形成する。従って、2組のベクトルが直角に交わっているが、3つ目の組は90°にならない。.

新しい!!: 炭酸リチウムと単斜晶系 · 続きを見る »

双極性障害

双極性障害(そうきょくせいしょうがい、Bipolar disorder)は、躁病(そうびょう)と抑うつの病相(エピソード)を循環する精神障害である。 ICD-10と以前のDSM-IV(1994年)では、うつ病とともに気分障害に分類されている。ICD-10における診断名は双極性感情障害であり『ICD-10』 第5章 「精神及び行動の障害」 F31 双極性感情障害<躁うつ病>、もっと古くはと呼ばれた。 双極I型障害と、より軽い軽躁病のエピソードを持つ双極II型障害とがある。双極性障害の躁状態、うつ状態はほとんどの場合回復するが、90%以上再発する。単極性の(躁病のない)うつ病は異なる経過をたどる。発病のメカニズムや使われる薬は異なる。 気分安定薬による予防が必要となることが一般的である。双極II型障害に対しては証拠が少なく薬物療法はケースバイケースで判断する。生活習慣の改善が必要となる。障害とは生涯にわたるつきあいとなる。20年後の自殺率は6%以上高く、その他の不安障害、薬物乱用などの併発も多い。 世界保健機関(WHO)は世界で6000万人が罹患していると推定している。好発年齢は25歳で、初回発病は15-19歳からであり12歳以下は稀である。35歳以上でも別の原因が念頭に入れられる。一卵性双生児における一致率は50 - 80%と、二卵性双生児 (5 - 30%) よりも高いことから、遺伝要因の関与が高いことが指摘されている。.

新しい!!: 炭酸リチウムと双極性障害 · 続きを見る »

塩基

塩基(えんき、base)は化学において、酸と対になってはたらく物質のこと。一般に、プロトン (H+) を受け取る、または電子対を与える化学種。歴史の中で、概念の拡大をともないながら定義が考え直されてきたことで、何種類かの塩基の定義が存在する。 塩基としてはたらく性質を塩基性(えんきせい)、またそのような水溶液を特にアルカリ性という。酸や塩基の定義は相対的な概念であるため、ある系で塩基である物質が、別の系では酸としてはたらくことも珍しくはない。例えば水は、塩化水素に対しては、プロトンを受け取るブレンステッド塩基として振る舞うが、アンモニアに対しては、プロトンを与えるブレンステッド酸として作用する。塩基性の強い塩基を強塩基(強アルカリ)、弱い塩基を弱塩基(弱アルカリ)と呼ぶ。また、核酸が持つ核酸塩基のことを、単に塩基と呼ぶことがある。.

新しい!!: 炭酸リチウムと塩基 · 続きを見る »

塩化リチウム

塩化リチウム(えんかリチウム、lithium chloride)はリチウム (Li) と塩素 (Cl) からなるイオン性の化合物(塩)である。吸湿性をもち、水に溶けやすい。塩化ナトリウムや塩化カリウムと比べ、メタノールやアセトンなど極性の有機溶媒にもよく溶ける(右下表)。.

新しい!!: 炭酸リチウムと塩化リチウム · 続きを見る »

多形

多形(たけい、英: polymorphism).

新しい!!: 炭酸リチウムと多形 · 続きを見る »

二酸化炭素

二酸化炭素(にさんかたんそ、carbon dioxide)は、化学式が CO2 と表される無機化合物である。化学式から「シーオーツー」と呼ばれる事もある。 地球上で最も代表的な炭素の酸化物であり、炭素単体や有機化合物の燃焼によって容易に生じる。気体は炭酸ガス、固体はドライアイス、液体は液体二酸化炭素、水溶液は炭酸・炭酸水と呼ばれる。 多方面の産業で幅広く使われる(後述)。日本では高圧ガス保安法容器保安規則第十条により、二酸化炭素(液化炭酸ガス)の容器(ボンベ)の色は緑色と定められている。 温室効果ガスの排出量を示すための換算指標でもあり、メタンや亜酸化窒素、フロンガスなどが変換される。日本では2014年度で13.6億トンが総排出量として算出された。.

新しい!!: 炭酸リチウムと二酸化炭素 · 続きを見る »

化学式

化学式(かがくしき、chemical formula)とは、化学物質を元素の構成で表現する表記法である。分子からなる物質を表す化学式を分子式(ぶんししき、molecular formula)、イオン物質を表す化学式をイオン式(イオンしき、ionic formula)と呼ぶことがある。化学式と呼ぶべき場面においても、分子式と言い回される場合は多い。 化学式が利用される場面としては、物質の属性情報としてそれに関連付けて利用される場合と、化学反応式の一部として物質を表すために利用される場合とがある。.

新しい!!: 炭酸リチウムと化学式 · 続きを見る »

ヨウ化リチウム

ヨウ化リチウム(Lithium iodide)は、リチウムとヨウ素の化合物である。空気にさらすとヨウ化物からヨウ素に酸化されるため黄色くなる。.

新しい!!: 炭酸リチウムとヨウ化リチウム · 続きを見る »

リチウム

リチウム(lithium、lithium )は原子番号 3、原子量 6.941 の元素である。元素記号は Li。アルカリ金属元素の一つで白銀色の軟らかい元素であり、全ての金属元素の中で最も軽く、比熱容量は全固体元素中で最も高い。 リチウムの化学的性質は、他のアルカリ金属元素よりもむしろアルカリ土類金属元素に類似している。酸化還元電位は全元素中で最も低い。リチウムには2つの安定同位体および8つの放射性同位体があり、天然に存在するリチウムは安定同位体である6Liおよび7Liからなっている。これらのリチウムの安定同位体は、中性子の衝突などによる核分裂反応を起こしやすいため恒星中で消費されやすく、原子番号の近い他の元素と比較して存在量は著しく小さい。 1817年にヨアン・オーガスト・アルフェドソンがペタル石の分析によって発見した。アルフェドソンの所属していた研究室の主催者であったイェンス・ベルセリウスによって、ギリシャ語で「石」を意味する lithos に由来してリチウムと名付けられた。アルフェドソンは金属リチウムの単離には成功せず、1821年にウィリアム・トマス・ブランドが電気分解によって初めて金属リチウムの単離に成功した。1923年にドイツのメタルゲゼルシャフト社が溶融塩電解による金属リチウムの工業的生産法を発見し、その後の金属リチウム生産へと繋がっていった。第二次世界大戦の戦中戦後には航空機用の耐熱グリースとしての小さな需要しかなかったが、冷戦下には水素爆弾製造のための需要が急激に増加した。その後冷戦の終了により核兵器用のリチウムの需要が大幅に冷え込んだものの、2000年代までにはリチウムイオン二次電池用のリチウム需要が増加している。 リチウムは地球上に広く分布しているが、非常に高い反応性のために単体としては存在していない。地殻中で25番目に多く存在する元素であり、火成岩や塩湖かん水中に多く含まれる。リチウムの埋蔵量の多くはアンデス山脈沿いに偏在しており、最大の産出国はチリである。海水中にはおよそ2300億トンのリチウムが含まれており、海水からリチウムを回収する技術の研究開発が進められている。世界のリチウム市場は少数の供給企業による寡占状態であるため、資源の偏在性と併せて需給ギャップが懸念されている。 リチウムは陶器やガラスの添加剤、光学ガラス、電池(一次電池および二次電池)、耐熱グリースや連続鋳造のフラックスとして利用される。2011年時点で最大の用途は陶器やガラス用途であるが、二次電池用途での需要が将来的に増加していくものと予測されている。リチウムの同位体は水素爆弾や核融合炉などにおいて核融合燃料であるトリチウムを生成するために利用されている。 リチウムは腐食性を有しており、高濃度のリチウム化合物に曝露されると肺水腫が引き起こされることがある。また、妊娠中の女性がリチウムを摂取することでの発生リスクが増加するといわれる。リチウムは覚醒剤を合成するためのバーチ還元における還元剤として利用されるため、一部の地域ではリチウム電池の販売が規制の対象となっている。リチウム電池はまた、短絡によって急速に放電して過熱することで爆発が起こる危険性がある。.

新しい!!: 炭酸リチウムとリチウム · 続きを見る »

リチウムイオン二次電池

封口前の円筒形リチウムイオン電池 (18650) 東芝Dynabookのリチウムイオンポリマー二次電池パック リサイクル法による) リチウムイオン二次電池(リチウムイオンにじでんち、lithium-ion rechargeable battery)は、正極と負極の間をリチウムイオンが移動することで充電や放電を行う二次電池である。正極、負極、電解質それぞれの材料は用途やメーカーによって様々であるが、代表的な構成は、正極にリチウム遷移金属複合酸化物、負極に炭素材料、電解質に有機溶媒などの非水電解質を用いる。単にリチウムイオン電池、リチウムイオンバッテリー、Li-ion電池、LIB、LiBとも言う。リチウムイオン二次電池という命名はソニー・エナジー・デバイスによる。 なお、似た名前の電池には以下のようなものがある。.

新しい!!: 炭酸リチウムとリチウムイオン二次電池 · 続きを見る »

フッ化リチウム

フッ化リチウム(フッかリチウム、lithium fluoride)は、リチウムとフッ素からなる無機化合物である。組成式は LiF と表される。.

新しい!!: 炭酸リチウムとフッ化リチウム · 続きを見る »

アルミニウム

アルミニウム(aluminium、aluminium, aluminum )は、原子番号 13、原子量 26.98 の元素である。元素記号は Al。日本語では、かつては軽銀(けいぎん、銀に似た外見をもち軽いことから)や礬素(ばんそ、ミョウバン(明礬)から)とも呼ばれた。アルミニウムをアルミと略すことも多い。 「アルミ箔」、「アルミサッシ」、一円硬貨などアルミニウムを使用した日用品は数多く、非常に生活に身近な金属である。天然には化合物のかたちで広く分布し、ケイ素や酸素とともに地殻を形成する主な元素の一つである。自然アルミニウム (Aluminium, Native Aluminium) というかたちで単体での産出も知られているが、稀である。単体での産出が稀少であったため、自然界に広く分布する元素であるにもかかわらず発見が19世紀初頭と非常に遅く、精錬に大量の電力を必要とするため工業原料として広く使用されるようになるのは20世紀に入ってからと、金属としての使用の歴史はほかの重要金属に比べて非常に浅い。 単体は銀白色の金属で、常温常圧で良い熱伝導性・電気伝導性を持ち、加工性が良く、実用金属としては軽量であるため、広く用いられている。熱力学的に酸化されやすい金属ではあるが、空気中では表面にできた酸化皮膜により内部が保護されるため高い耐食性を持つ。.

新しい!!: 炭酸リチウムとアルミニウム · 続きを見る »

ガラス

ガラス工芸 en) 建築物の外壁に用いられているガラス ガラス(、glass)または硝子(しょうし)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。.

新しい!!: 炭酸リチウムとガラス · 続きを見る »

コバルト酸リチウム

バルト酸リチウムは二酸化リチウムコバルトまたは酸化リチウムコバルト(III)の慣用名であり、組成式 で表わされる化合物である。 リチウムイオン二次電池の正極として用いられる。LiCoO2 の構造は、リチウム層とコバルトと酸素原子の八面体で構成されるスラブが交互に積層した構造であることが、理論的にも、 X線回折、電子顕微鏡、粉末中性子回折、EXAFSなどの手法を用いて実験的にも知られている。結晶の空間群はヘルマン・モーガン記号で R\bar 3m であり、菱面体晶系の単位胞に三回回映軸と鏡映面を持つ。 LiCoO2 を正極に用いる電池は容量が大きい代償として反応性が高く、リチウム・ニッケル・アルミニウム酸化物系などの新型よりもに欠ける。このため、 LiCoO2 電池は高温(>130℃) での使用時や過充電の際に熱暴走の懸念がある。温度が上昇すると、LiCoO2 は分解して酸素を発生し、その酸素が電解質の有機溶媒と反応してしまう。この反応は発熱の大きい反応であり、周囲のセルにまで熱暴走が拡大したり、周囲の可燃物に引火する危険性がある。 この化合物のインターカレーション型電極としての有用性は1980年、オックスフォード大学のジョン・グッドイナフらにより発見された。.

新しい!!: 炭酸リチウムとコバルト酸リチウム · 続きを見る »

シリカ

リカ()は、二酸化ケイ素(SiO2)、もしくは二酸化ケイ素によって構成される物質の総称。シリカという呼び名のほかに無水ケイ酸、ケイ酸、酸化シリコンと呼ばれることもある。 純粋なシリカは無色透明であるが、自然界には不純物を含む有色のものも存在する。自然界では長石類に次いで産出量が多い。鉱物として存在するほか生体内にも微量ながら含まれる。.

新しい!!: 炭酸リチウムとシリカ · 続きを見る »

セメント

メント(cement)とは、一般的には、水や液剤などにより水和や重合し硬化する粉体を指す。広義には、アスファルト、膠、樹脂、石膏、石灰等や、これらを組み合わせた接着剤全般を指す。 本項では、モルタルやコンクリートとして使用される、ポルトランドセメントや混合セメントなどの水硬性セメント(狭義の「セメント」)について記述する。.

新しい!!: 炭酸リチウムとセメント · 続きを見る »

硫酸リチウム

硫酸リチウム(りゅうさんリチウム、lithium sulfate)は組成式Li2SO4で表されるリチウムの硫酸塩である。.

新しい!!: 炭酸リチウムと硫酸リチウム · 続きを見る »

蝋燭の炎 炎(ほのお)は、火の中でも、気体が燃焼するときに見られる穂のような、光と熱を発している部分を指す。語源は火の穂(ほのほ)から由来していると言われている。.

新しい!!: 炭酸リチウムと炎 · 続きを見る »

炎色反応

色反応(えんしょくはんのう)(焔色反応とも)とは、アルカリ金属やアルカリ土類金属、銅などの金属や塩を炎の中に入れると各金属元素特有の色を示す反応のこと。金属の定性分析や、花火の着色に利用されている。.

新しい!!: 炭酸リチウムと炎色反応 · 続きを見る »

炭酸塩

炭酸イオンの球棒モデル 炭酸塩(たんさんえん、)は、炭酸イオン(、CO32−)を含む化合物の総称である。英語の carbonate は炭酸塩と炭酸イオンの他、炭酸エステル、炭酸塩化、炭化、飲料などに炭酸を加える操作のことも指す。無機炭素化合物の一種で、炭酸塩の中には、生物にとって重要な物質である炭酸カルシウムや、産業にとって重要な炭酸ナトリウムなどがある。炭酸塩はアルカリ金属以外は水に溶けないものが多い。一般に加熱により二酸化炭素を発生して金属酸化物を生じる。 \rm CaCO_3 \quad \overset \quad CaO + CO_2.

新しい!!: 炭酸リチウムと炭酸塩 · 続きを見る »

炭酸水素塩

炭酸水素塩(たんさんすいそえん、hydrogencarbonate)または重炭酸塩(じゅうたんさんえん、Bicarbonate)は炭酸水素イオンを含む、水素塩(酸性塩)の一種である。リチウムを除くアルカリ金属塩、カドミウム塩、およびアンモニウム塩などが固体の結晶として単離されているが、アルカリ土類金属その他の炭酸水素塩は、これらの炭酸塩と過剰の二酸化炭素の反応により水溶液中でのみ存在し、固体として分離を試みると分解して炭酸塩および二酸化炭素となる。 アルカリ金属塩も水溶液の加熱および、固体の200℃程度の加熱により分解して炭酸塩となる。.

新しい!!: 炭酸リチウムと炭酸水素塩 · 続きを見る »

無機化合物

無機化合物(むきかごうぶつ、inorganic compound)は、有機化合物以外の化合物であり、具体的には単純な一部の炭素化合物(下に示す)と、炭素以外の元素で構成される化合物である。“無機”には「生命力を有さない」と言う意味があり、“機”には「生活機能」と言う意味がある。 炭素化合物のうち無機化合物に分類されるものには、グラファイトやダイヤモンドなど炭素の同素体、一酸化炭素や二酸化炭素、二硫化炭素など陰性の元素と作る化合物、あるいは炭酸カルシウムなどの金属炭酸塩、青酸と金属青酸塩、金属シアン酸塩、金属チオシアン酸塩、金属炭化物などの塩が挙げられる。 無機化合物の化学的性質は、元素の価電子(最外殻電子)の数に応じて性質が多彩に変化する。特に典型元素は周期表の族番号と周期にそれぞれ特有の性質の関連が知られている。 典型元素.

新しい!!: 炭酸リチウムと無機化合物 · 続きを見る »

花火

花火(はなび)は、火薬と金属の粉末を混ぜて包んだもので、火を付け、燃焼・破裂時の音や火花の色、形状などを演出するもの。火花に色をつけるために金属の炎色反応を利用しており、混ぜ合わせる金属の種類によってさまざまな色合いの火花を出すことができる。原則として野外で使用するのが一般的。 花火の光・色彩・煙を発生させる火薬の部分を星という。多くの場合は火薬が爆発・燃焼した時に飛び散る火の粉の色や形を楽しむが、ロケット花火やへび花火、パラシュート花火のように、火薬の燃焼以外を楽しむものもある。花火大会のほか、イベントなどの開催を告げるため、また、祝砲のかわりにも使われる。 英語では、という。近年は「華火」の字を当て字として使用している例も稀にある。.

新しい!!: 炭酸リチウムと花火 · 続きを見る »

融剤

融剤(ゆうざい)は物質を融解しやすくするために添加される物質である。 フラックス (flux) ともいう。用途に応じて色々な物質が用いられる。融剤が溶解を促進する作用は化学反応や塩の交換反応に基づいて液相を形成する場合が多い。また、セラミックスの焼結反応や結晶化を促進する目的や、単結晶を得やすくするために添加される薬剤などは多成分系の融点降下により溶けやすくする。融雪剤はこの一種で、この原理は化学変化ではなく多相系の束一的性質による。 乾式製錬で融剤が反応して生成するスラグは融解を促進する作用以外に、表面に浮かぶことで大気を遮蔽したり、不純物を取り込むなど精錬度を向上させる作用も併せ持つ。.

新しい!!: 炭酸リチウムと融剤 · 続きを見る »

赤いバラの花 赤いリンゴの実 赤(あか、紅、朱、丹)は色のひとつで、熟したイチゴや血液のような色の総称。JIS規格では基本色名の一つ。国際照明委員会 (CIE) は700 nm の波長をRGB表色系においてR(赤)と規定している。赤より波長の長い光を赤外線と呼ぶが、様々な表色系などにおける赤の波長とは間接的にしか関係ない。語源は「明(アカ)るい」に通じるとされる。「朱・緋(あけ)」の表記が用いられることもある。赤色(セキショク、あかいろ)は赤の同義語。.

新しい!!: 炭酸リチウムと赤 · 続きを見る »

臭化リチウム

臭化リチウム(しゅうかリチウム、Lithium bromide)は、リチウムの臭化物で、化学式LiBrで表される。.

新しい!!: 炭酸リチウムと臭化リチウム · 続きを見る »

鉱石

鉱石(こうせき、ore)は、人間の経済活動にとって有用な資源となる鉱物、またはそれを含有する岩石のことである。 資源として有用な鉱物は、コレクターが収集したり、博物館で展示されるような、その種類だけ顕著に集まった状態で埋蔵されていることはほとんどなく、他のさまざまな鉱物と混在した岩石の状態で産することがほとんどである。こうした岩石を鉱石と呼ぶ。鉱石に有用鉱物が充分な密度で含まれているか、またひとつの鉱山に鉱石が充分な量埋蔵されているかが、経済的な資源採掘に値する鉱山か否かを判断する上で重要である。鉱物資源として有用な鉱物がいくら高密度で鉱石の中に存在しても、十分な利益が得られるほどの埋蔵量がないと鉱山は運営できない。 金山では、菱刈金山の金鉱石が世界有数の金含有量を有する鉱石と、大きな埋蔵量で著名である。.

新しい!!: 炭酸リチウムと鉱石 · 続きを見る »

電解質

電解質(でんかいしつ、英語:electrolyte)とは溶媒中に溶解した際に、陽イオンと陰イオンに電離する物質のことである。これに対し、溶媒中に溶解しても電離しない物質を非電解質という。 一般に電解液は電気分解が起こる以上の電圧をかければ電気伝導性を示すが、電解液でないものは電気抵抗が大きい。また、ほとんど溶媒中に溶解しないものは電解質にも非電解質にも含まれない。 溶融した電解質や固体の電解質というものも存在する。 つまり、物質を水に溶かしたとき、イオンになるものとならないものがあり、電気を通す物質はイオンになるものである。これを電解質という。 電解質溶液は十分に高い電圧(一般に数ボルト程度)をかけると電気分解することが可能である。「電解質」という名称はこのことから付けられた。電気分解を起こすことのできる理論分解電圧 V ′ はギブス自由エネルギー変化と以下の関係にある。実際には過電圧のため理論分解電圧より高い電圧を必要とする。.

新しい!!: 炭酸リチウムと電解質 · 続きを見る »

電極

電極(でんきょく)とは、受動素子、真空管や半導体素子のような能動素子、電気分解の装置、電池などにおいて、その対象物を働かせる、あるいは電気信号を測定するなどの目的で、電気的に接続する部分のことである。 また、トランジスタのベース、FETのゲートなど、ある電極から別の電極への電荷の移動を制御するための電極もある。.

新しい!!: 炭酸リチウムと電極 · 続きを見る »

水素化リチウム

水素化リチウム(すいそかリチウム、lithium hydride)とは、組成式LiHで表されるリチウムと水素から成る無機化合物である。.

新しい!!: 炭酸リチウムと水素化リチウム · 続きを見る »

水酸化リチウム

水酸化リチウム(すいさんかリチウム、lithium hydroxide)は化学式が LiOH と表されるリチウムの水酸化物である。無水物は吸湿性の白色固体である。水に可溶性で、水溶液は強アルカリ性を示し腐食性を持つ。エタノールにわずかに溶ける。水和物及び無水物の形で市販されている。.

新しい!!: 炭酸リチウムと水酸化リチウム · 続きを見る »

溶解度

溶解度(ようかいど、solubility)とはある溶質が一定の量の溶媒に溶ける限界量をいう。飽和溶液の濃度である。通常、Sという記号で表される。 固体の溶解度は、一定温度で、溶媒100 gに溶ける溶質の質量や、飽和溶液100 gに溶けている溶質の質量などで表す。本来は無名数であるが、一般に等の単位を付して表す。この場合、溶媒が水ならとなる。溶解度は温度によって変化し、固体に関しては、例外もあるが、温度が上がると溶解度が上がるものが多い。 気体の溶解度は一定温度で、1 atm(1気圧)の気体が溶媒1 mlに溶ける体積を標準状態(STP)に換算して表す。この溶解度は温度によって変化する。 化学の金言として「似たものは似たものを溶かす」と言われる。これが意味するところは、極性分子は極性分子(水)に溶解し、非極性分子は非極性溶媒(例えば油)に溶解するという傾向のことである。このため溶媒同士でも水と油は溶けあわず分離し、水とエタノールではよく混和する。.

新しい!!: 炭酸リチウムと溶解度 · 続きを見る »

準安定状態

準安定状態(じゅんあんていじょうたい、Metastable state(s) )は、真の安定状態では無いが、大きな乱れが与えられない限り安定に存在できるような状態。準安定状態は小さな乱れに対しては安定であるが、大きな乱れが与えられると不安定になり、真の安定状態へ変化してしまう。 準安定状態は非平衡状態なので、いつかは真の安定状態へ変化するが、その変化の時間が非常に長いのが特徴である。「自由エネルギーが極小値をとるような状態」という記述がされることが多いが、それはあくまでイメージであることに注意しなければならない。そもそも平衡熱力学では平衡状態しか予言できないので準安定状態は扱えない。 準安定状態は、一つだけとは限らず、多数存在し得る。準安定状態同士、準安定状態と最安定状態の間には、乗り越えるべきエネルギー障壁が存在する。障壁は高い場合もあれば、低い場合もありまちまちである。障壁を乗り越えるような駆動力(熱など)があれば、より安定な状態へと移っていく。 準安定な状態の例としては、過冷却状態、過飽和状態、ガラス状態、常温・常圧におけるダイヤモンド(最も安定なのはグラファイト)、アナターゼ型の二酸化チタンなどがある。.

新しい!!: 炭酸リチウムと準安定状態 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »