ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

形態学 (生物学)

索引 形態学 (生物学)

形態学(けいたいがく、独:Morphologie、英:Morphology)とは、生物学の一分野であり、生物の構造と形態に関する学問。形態学的記述では、主に、生物の器官や組織の肉眼的・可視的な特徴を得る。 光学器械と、染色技法の発達によって、19世紀にはすでに細胞や細胞以下のレベルまで研究されていた。20世紀には、電子顕微鏡のレベルで研究が進んだ(微細構造)。.

29 関係: 収斂進化微細構造ヨハン・ヴォルフガング・フォン・ゲーテリボ核酸フリードリヒ・ブルダッハ分類学ギリシア語器官系統学細胞組織 (生物学)組織学生化学生理生理学生物生物の分類生物学表形分類学表現型解剖学薬理学電子顕微鏡進化論植物解剖学構造比較解剖学昆虫の構造擬態

収斂進化

モグラとケラは前足の外形がよく似ている。ヨーロッパモグラ ''Talpa europaea'' ケラの一種 ''G. gryllotalpa''の前脚 収斂進化(しゅうれんしんか、convergent evolution)とは、複数の異なるグループの生物が、同様の生態的地位についたときに、系統に関わらず身体的特徴が似通った姿に進化する現象。.

新しい!!: 形態学 (生物学)と収斂進化 · 続きを見る »

微細構造

微細構造(びさいこうぞう 英 Ultrastructure)は、生物学の分野では生物体に見られるさまざまな構造のうちで、光学顕微鏡では判別できないくらい細かな構造のことを指す。英原語を直訳すると超構造になり、用語の対訳としては超微細構造という語があるが、現実的にはこの語が使われることが増えている。.

新しい!!: 形態学 (生物学)と微細構造 · 続きを見る »

ヨハン・ヴォルフガング・フォン・ゲーテ

ヨハン・ヴォルフガング・フォン・ゲーテ(Johann Wolfgang von Goethe、1749年8月28日 - 1832年3月22日)は、ドイツの詩人、劇作家、小説家、自然科学者(色彩論、形態学、生物学、地質学、自然哲学、汎神論)、政治家、法律家。ドイツを代表する文豪であり、小説『若きウェルテルの悩み』『ヴィルヘルム・マイスターの修業時代』、叙事詩『ヘルマンとドロテーア』、詩劇『ファウスト』など広い分野で重要な作品を残した。 その文学活動は大きく3期に分けられる。初期のゲーテはヘルダーに教えを受けたシュトゥルム・ウント・ドラングの代表的詩人であり、25歳のときに出版した『若きウェルテルの悩み』でヨーロッパ中にその文名を轟かせた。その後ヴァイマル公国の宮廷顧問(その後枢密顧問官・政務長官つまり宰相も務めた)となりしばらく公務に没頭するが、シュタイン夫人との恋愛やイタリアへの旅行などを経て古代の調和的な美に目覚めていき、『エグモント』『ヘルマンとドロテーア』『ヴィルヘルム・マイスターの修業時代』などを執筆、シラーとともにドイツ文学における古典主義時代を築いていく。 シラーの死を経た晩年も創作意欲は衰えず、公務や自然科学研究を続けながら『親和力』『ヴィルヘルム・マイスターの遍歴時代』『西東詩集』など円熟した作品を成した。大作『ファウスト』は20代から死の直前まで書き継がれたライフ・ワークである。ほかに旅行記『』、自伝『詩と真実』や、自然科学者として「植物変態論」『色彩論』などの著作を残している。.

新しい!!: 形態学 (生物学)とヨハン・ヴォルフガング・フォン・ゲーテ · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: 形態学 (生物学)とリボ核酸 · 続きを見る »

フリードリヒ・ブルダッハ

ール・フリードリヒ・ブルダッハ(Karl Friedrich Burdach、1776年6月12日 - 1847年7月16日)はドイツの解剖学者、生理学者である。"Biologie"(英:Biology,「生物学」)という言葉を造語した人物とされる。.

新しい!!: 形態学 (生物学)とフリードリヒ・ブルダッハ · 続きを見る »

分類学

分類学(ぶんるいがく、taxonomy)とは、生物を分類することを目的とした生物学の一分野。生物を種々の特徴によって分類し、体系的にまとめ、生物多様性を理解する。 なお、広義の分類学では無生物も含めた事物(観念も含めて)を対象とする。歴史的には博物学にその起源があり、古くは、鉱物などもその対象としたが、それらの分野は分類学という形で発展することがなかった。以下の叙述では狭義の分類学(生物の分類学)についておこなう。 分類学は、この世に存在する、あるいは存在したすべての生物をその対象とする。現在存在しない生物については古生物学が分担するが、現在の生物の分類にも深く関わりがあるため、それらはまとめて考える必要がある。実際には、個々の分類学者はその中の特定の分類群を研究対象とし、全体を見渡した分類体系をその対象にすることのできる人はあまりいない。 分類学は本来は進化論とは無関係であったが、現在では近いどうしを集め分類群を作成することで系統樹が作成され、分類学は進化を理解する上で重要な役割をもっている。.

新しい!!: 形態学 (生物学)と分類学 · 続きを見る »

ギリシア語

リシア語(ギリシアご、現代ギリシア語: Ελληνικά, または Ελληνική γλώσσα )はインド・ヨーロッパ語族ヘレニック語派(ギリシア語派)に属する言語。単独でヘレニック語派(ギリシア語派)を形成する。ギリシア共和国やキプロス共和国、イスタンブールのギリシア人居住区などで使用されており、話者は約1200万人。また、ラテン語とともに学名や専門用語にも使用されている。省略形は希語。.

新しい!!: 形態学 (生物学)とギリシア語 · 続きを見る »

器官

器官(きかん、organ)とは、生物のうち、動物や植物などの多細胞生物の体を構成する単位で、形態的に周囲と区別され、それ全体としてひとまとまりの機能を担うもののこと。生体内の構造の単位としては、多数の細胞が集まって組織を構成し、複数の組織が集まって器官を構成している。 細胞内にあって、細胞を構成する機能単位は、細胞小器官 (細胞内小器官、小器官、オルガネラ) を参照。.

新しい!!: 形態学 (生物学)と器官 · 続きを見る »

系統学

系統学(けいとうがく、英語:phylogenetics)とは、生物の種の系統的な発生、つまり生物の進化による系統分化の歴史を研究する学問。種や系統群の分化と進化を研究目的とする。 研究技術として、比較解剖学、比較発生学などによって得られた形態などの情報を、統計学を駆使した分岐学などを用いて解析する。生化学的手法も古くから植物の色素などの代謝産物の比較研究が系統解析の手法として用いられてきたが、これに加えて1980年代以降は、DNAやRNAといった情報高分子の塩基配列の解析などによる分子系統学も発達してきた。.

新しい!!: 形態学 (生物学)と系統学 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: 形態学 (生物学)と細胞 · 続きを見る »

組織 (生物学)

生物学における組織(そしき、ドイツ語: Gewebe、フランス語: tissu、英語:tissue)とは、何種類かの決まった細胞が一定のパターンで集合した構造の単位のことで、全体としてひとつのまとまった役割をもつ。生体内の各器官(臓器)は、何種類かの組織が決まったパターンで集まって構成されている。.

新しい!!: 形態学 (生物学)と組織 (生物学) · 続きを見る »

組織学

組織学(Histology、ギリシア語で「組織」を意味するἱστός histosと、「科学」を意味する-λογία ''-logia''の複合語)は、植物・動物の細胞・組織を観察する顕微解剖学。解剖学から発展し、生物学や医学の重要な方法論の一つである。細胞学が細胞の内部を主な対象とするのに対し、組織学では細胞間に見られる構造・機能的な関連性に注目する。 組織学で最も基礎的な手技は、固定や染色といった手法を用いて用意した標本の顕微鏡観察である。組織学研究は組織培養を活用することも多い。組織培養とは、ヒトや動物から採取された、生きた細胞を単離し、様々な研究目的に、人工環境で培養することを指す。組織染色は、標本の観察や、微細構造の見分けを容易にするために、しばしば行われる。 組織学は発生生物学の基本技術である他、病理学でも病理組織の検査に用いられる。がんなどの病気の診断を付ける上で、検体の病理的検査が日常的に使われるようになってからは、病態組織を顕微鏡的に観察するが、の重要なツールとなった。海外では、経験を持った内科医(多くは資格を持った病理医である)が、組織病理の検査を自ら行い、それに基づいた診断を下す。一方で日本では、病理専門医が検査と診断を行うことが多いが、各地でこの病理医不足が叫ばれている。 海外では、検査のための組織標本を作成する専門職を、「組織学技術者」(histotechnicians, histology technicians (HT), histology technologists (HTL))「医療科学者」(medical scientists)、(Medical Laboratory Assistant, Medical laboratory technician)、(Biomedical scientist)などと呼ぶ(以上は全て訳者訳)。彼らの研究領域は histotechnology(訳:組織科学)と呼ばれる。.

新しい!!: 形態学 (生物学)と組織学 · 続きを見る »

生化学

生化学(せいかがく、英語:biochemistry)は生命現象を化学的に研究する生化学辞典第2版、p.713 【生化学】生物学または化学の一分野である。生物化学(せいぶつかがく、biological chemistry)とも言う(若干生化学と生物化学で指す意味や範囲が違うことがある。生物化学は化学の一分野として生体物質を扱う学問を指すことが多い)。生物を成り立たせている物質と、それが合成や分解を起こすしくみ、そしてそれぞれが生体システムの中で持つ役割の究明を目的とする。.

新しい!!: 形態学 (生物学)と生化学 · 続きを見る »

生理

生理(せいり)とは、.

新しい!!: 形態学 (生物学)と生理 · 続きを見る »

生理学

生理学(せいりがく、physiology)は、生命現象を機能の側面から研究する生物学の一分野。フランスの医師、生理学者であるによりこの用語が初めて導入された。.

新しい!!: 形態学 (生物学)と生理学 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: 形態学 (生物学)と生物 · 続きを見る »

生物の分類

生物の分類(せいぶつのぶんるい)では、生物を統一的に階級分類する方法を説明する。分類学、学名、:Category:分類学、ウィキスピーシーズも参照のこと。.

新しい!!: 形態学 (生物学)と生物の分類 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 形態学 (生物学)と生物学 · 続きを見る »

表形分類学

表形分類学(ひょうけいぶんるいがく、英語:phenetics)は、数値(数量)分類学ともいい、生物の全体的類似性を定量的に表現して分類する分類学の一方法である。 1950-60年代に、従来の分類学が客観的、科学的でないと批判され、それに代わる方法として提案された。同じ頃、分岐学が系統学の方法として提案され、分類学の方法としても用いられるようになったのとは対照的に、表形分類学は系統(進化上の関係)とは関係なく数値的に比較するための方法として提案された。 具体的には、形態や生化学的性質といった形質を多数比較して生物種間の距離を求め、クラスタリングを行う。この際に特定の形質だけを重視すること(つまり、重み付け)はしない。大量の変数の測定結果から、それを2~3次元のグラフに表現し直す方法が用いられる。これは生物が示す多様性を整理して人間が直接扱えるレベルにするにはよい方法であるが、このような整理によって多くの情報の損失も避けられない。 表形分類学の方法論の多くは、このような情報の損失と、解釈が容易になることのバランスの上に成り立っている。相似(相同ではない)による類似を取り上げる傾向が高いため、系統研究に関しては現在ほぼ分岐学に取って代わられているが、一部の分岐学的方法が実用的でないような場合に適した近似として用いられている。 また類似のアイディアは近隣結合法として発展し、分子系統学の有力な方法として用いられている。違いが相対的に大きすぎる(どの2つをとっても特に類似が大きくはないような)生物を分類するには、分岐学的方法は適用しにくいため、表形的方法が用いられる。特に種レベルの問題には表形的方法が多く用いられ、種の同定を行う場合には、全体的類似性を定量的に表す表形的方法が適している(もちろん場合によっては分岐論的方法も有用で、2つの方法論は車の両輪のようなものである)。 また表形分類学で発展した方法の多くは、分類学以外の領域では、群集生態学によって受容されさらに発展している。 ---- 英語版からの翻訳 Category:分類学 (生物学) Category:系統学 hu:Numerikus taxonómia.

新しい!!: 形態学 (生物学)と表形分類学 · 続きを見る »

表現型

表現型(ひょうげんがた、ひょうげんけい、)とは、ある生物のもつ遺伝子型が形質として表現されたものである。その生物の形態、構造、行動、生理的性質などを含む。獲得形質は含まない。.

新しい!!: 形態学 (生物学)と表現型 · 続きを見る »

解剖学

Mondino dei Liuzzi, ''Anathomia'', 1541 解剖学(かいぼうがく、)とは、広い意味で生物体の正常な形態と構造とを研究する分野である。形態学の一つ。.

新しい!!: 形態学 (生物学)と解剖学 · 続きを見る »

薬理学

薬理学は様々な学問分野とリンクしている。 薬理学(やくりがく、Pharmacology)は生体内外の物質と生体の相互作用を、種々の研究方法により個体、臓器、組織、細胞、分子のレベルを貫いて総合的に研究し、さらに創薬・育薬などの薬物の疾病治療への応用を視野に入れ、薬物治療の基盤を確立する科学であると定義される。薬物と生体の相互作用の結果生じた現象の解析には解剖学、生理学、生化学、分子生物学、遺伝学、機能形態学などの基礎医学の知識が要求される。解析に用いる手法や対象により薬理学は様々な分野に細分化される。.

新しい!!: 形態学 (生物学)と薬理学 · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: 形態学 (生物学)と電子顕微鏡 · 続きを見る »

進化論

進化論(しんかろん、theory of evolution)とは、生物が進化したものだとする提唱、あるいは進化に関する様々な研究や議論のことである『岩波生物学辞典第4版』。 生物は不変のものではなく長期間かけて次第に変化してきた、という仮説(学説)に基づいて、現在見られる様々な生物は全てその過程のなかで生まれてきたとする説明や理論群である。進化が起こっているということを認める判断と、進化のメカニズムを説明する理論という2つの意味がある。なお、生物学における「進化」は純粋に「変化」を意味するものであって「進歩」を意味せず、価値判断について中立的である。 進化は実証の難しい現象であるが(現代では)生物学のあらゆる分野から進化を裏付ける証拠が提出されている (詳細は、進化の項目も参照のこと)。 初期の進化論は、ダーウィンの仮説に見られるように、画期的ではあったが、事実かどうか検証するのに必要な証拠が十分に無いままに主張されていた面もあった。だが、その後の議論の中で進化論は揉まれて改良されつつある。現代的な進化論は単一の理論ではない。それは適応、種分化、遺伝的浮動など進化の様々な現象を説明し予測する多くの理論の総称である。現代の進化理論では、「生物の遺伝的形質が世代を経る中で変化していく現象」だと考えられている。 本項では進化思想、進化理論、進化生物学の歴史、社会や宗教との関わりについて概説する。 なお、生物学において「進化論」の名称は適切ではないため、「進化学」という名称に変更すべきだとの指摘がある。.

新しい!!: 形態学 (生物学)と進化論 · 続きを見る »

植物解剖学

植物解剖学(しょくぶつかいぼうがく)とは、植物を対象とした解剖学の一分野である。あるいは植物学において解剖学的(組織学的)アプローチをする分野である。植物の構造や形態を観察し、その機能や病理の解明を行う。起源は古く、古代ギリシアのテオフラストス(アリストテレスの後継者)による研究が知られている。 解剖学の名を持つが、一般的な印象としての解剖は、植物では行なうことができない。動物の場合、内臓が個々に取りだせるものが多いので、体を切り開いてそれらを取り分けることができるが、植物の場合、明確な器官は内部に存在せず、それを区別するとしても、それらは互いに密着しており、むしろ様々な組織の配列として理解される。.

新しい!!: 形態学 (生物学)と植物解剖学 · 続きを見る »

構造

構造(こうぞう、英:structure)とは、ひとつのものを作りあげている部分部分の組み合わせかた。ひとつの全体を構成する諸要素同士の、対立・矛盾・依存などの関係の総称。複雑なものごとの 部分部分や要素要素の 配置や関係。.

新しい!!: 形態学 (生物学)と構造 · 続きを見る »

比較解剖学

比較解剖学(ひかくかいぼうがく、)は、生物学の一分野で、さまざまな生物体の構造を比較検討するものである。現生の生物だけでなく、化石についてもその対象を広げ、進化論にも大きな影響を与えた。.

新しい!!: 形態学 (生物学)と比較解剖学 · 続きを見る »

昆虫の構造

昆虫の構造(こんちゅうのこうぞう)では昆虫の成虫の外部、内部構造を扱う。昆虫は明瞭に頭、胸及び腹の三構造に分かれ、この三構造は体節が特定の器官を共有してまとまったものである。どのような昆虫でも頭、胸及び腹にある器官はそれほど変わりない。これらの三構造の接続部分には大概、神経や消化管など器官と器官をつなぐ器官または器官系しか入っていないのが一般的である。血管系は退化しており、体内に血液を充填させている。 幼虫においては、かなり構造に差がある。.

新しい!!: 形態学 (生物学)と昆虫の構造 · 続きを見る »

擬態

擬態(ぎたい、mimicry, mimesis)とは、.

新しい!!: 形態学 (生物学)と擬態 · 続きを見る »

ここにリダイレクトされます:

動物形態学植物形態学比較形態学無脊椎動物形態学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »