ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

射影幾何学

索引 射影幾何学

数学における射影幾何学(しゃえいきかがく、projective geometry)は射影変換の下で不変な幾何学的性質を研究する学問である(エルランゲン・プログラムも参照)。射影幾何は、初等的なユークリッド幾何とは設定を異にしており、射影空間といくつか基本的な幾何学的概念をもとに記述される。 初等的な直観としては、射影空間はそれと同じ次元のユークリッド空間と比べて「余分な」点(「無限遠点」と呼ばれる)を持ち、射影幾何学的な変換においてその余分な点と通常の点を行き来することが許されると考えることができる。射影幾何学における種々の有用な性質は、このような変換(射影変換)に関連して与えられる。最初に問題となるのは、この射影幾何学的な状況を適切に記述することのできる幾何学的な言語はどのようなものであるかということである。例えば、射影幾何において(ユークリッド幾何で扱うようには)角の概念を考えることはできない。実際、角が射影変換の下で不変でないような幾何学的概念の一つであることは透視図などを見れば明らかであり、このような透視図法に関する理論が、事実射影幾何学の源流の一つともなっている。初等的な幾何学とのもう一つの違いとして「平行線は無限遠点において交わる」と考えることが挙げられる。これにより、初等幾何学の概念を射影幾何学へ持ち込むことができる。これもやはり、透視図において鉄道の線路が地平線において交わるといったような直観を基礎に持つ概念である。二次元における射影幾何の基本的な内容に関しては射影平面の項へ譲る。 こういった考え方は古くからあったものだが、射影幾何学として発展するのは主に19世紀のことである。多くの研究が取りまとめられ、射影幾何学は当時の幾何学の最も代表的な分野となった。ここでいう射影幾何学は、座標系(斉次座標系)の各成分が複素数となる複素射影空間についての理論である。そしていくつかのより抽象的な数学の系譜(例えば不変式論、代数幾何学イタリア学派、あるいは古典群の研究へつながるフェリックス・クラインのエルランゲン・プログラムなど)が射影幾何学を礎として打ち立てられていった。これらの主題に関わった多くの研究者は、肩書きとしては総合幾何学 (synthetic geometry) に属する研究者である。他にも、射影幾何学の公理的研究から生まれた研究分野として有限幾何学がある。 射影幾何学自体も現在では多くの研究分野へ細分化が進んでおり、主なものとしては、射影代数幾何学(射影代数多様体の研究)と射影微分幾何学(射影変換に関する微分不変量の研究)の二つを挙げることができるだろう。.

65 関係: 可換体双曲幾何学双曲線射影多様体射影変換射影平面射影空間射影直線不変量平行二次曲面代数学代数幾何学代数的位相幾何学代数曲線チャーン類ハロルド・スコット・マクドナルド・コクセターポール・ディラックメビウス変換ユークリッド幾何学ユークリッド空間ヨハネス・ケプラーラザール・カルノーロビン・ハーツホーンブレーズ・パスカルパップスパップスの定理パスカルの定理デザルグの定理フィリッポ・ブルネレスキフェリックス・クラインダフィット・ヒルベルトベルンハルト・リーマンアルフレッド・ノース・ホワイトヘッドアフィン空間エルランゲン・プログラムガスパール・モンジュコンパスジャン=ヴィクトル・ポンスレジュゼッペ・ペアノジラール・デザルグジーノ・ファノ円錐曲線全単射公理線型代数学群 (数学)環上の射影直線点 (数学)無限遠点...直線遠近法非ユークリッド幾何学解析幾何学計量超平面距離空間量子力学楕円楕円幾何学有限幾何学斜体 (数学)放物線数え上げ幾何学数学 インデックスを展開 (15 もっと) »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 射影幾何学と可換体 · 続きを見る »

双曲幾何学

双曲幾何学(そうきょくきかがく、)またはボヤイ・ロバチェフスキー幾何学 とは、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、負の曲率を持つ曲がった空間における幾何学である。ユークリッド幾何学の検証ということでサッケリーなども幾つかの定理を導いているが、完全で矛盾のない公理系を持つユークリッド幾何学ではない新しい幾何学と認識してまとめたのは同時期にそれぞれ独立に発表したロバチェフスキー(1829年発表)、ボヤイ(1832年発表)、およびガウス(発表せず)らの功績である。 ユークリッドのユークリッド原論の5番目の公準(任意の直線上にない一点を通る平行な直線がただ一本存在すること、 平行線公準)に対して、それを否定する公理を付け加え、その新たな平行線公理と無矛盾な体系として得られる幾何学である非ユークリッド幾何学の一つである。双曲幾何学の場合には、「ある直線 L とその直線の外にある点 p が与えられたとき、p を通り L に平行な直線は無限に存在する」という公理に支えられて構成される。 双曲幾何学では、ユークリッド原論の平行線公準以外の公理公準はすべて成立する。これは平行線公準が独立した公準であり、ほかの公準からは証明できないということである。なぜならば他の公準から証明できるとすればその他の全ての公準が成り立つ双曲幾何学でも平行線公準が成り立つはずだからである。この幾何学は、もともと平行線公準をユークリッド原論のほかの公準から証明しようとして作られた幾何学だが、皮肉なことにこの幾何学により平行線公準は独立でほかの公準からは証明できないことが証明された。 例えば、平面においては任意の直線にその直線上にない一点を通る平行線は一本しかないが、無限に開き続ける漏斗のようなものにおいては、任意の直線にその直線上にない一点を通る平行線は無限に存在することになる。 このような面はベルトラミーの擬球面と呼ばれ、双曲幾何学の成立する面(双曲平面)の一種である。また、ベルトラミーの擬球面などの双曲平面は、双曲幾何学が完成した後に発見された。.

新しい!!: 射影幾何学と双曲幾何学 · 続きを見る »

双曲線

双曲線(そうきょくせん、hyperbola)とは、2次元ユークリッド空間 R2 上で定義され、ある2点 P, Q からの距離の差が一定であるような曲線の総称である。この P, Q は焦点と呼ばれる。双曲線は、次の陰関数曲線の直交変換によって決定することができる。 この場合、焦点の座標は と書ける。このとき、2焦点から曲線への距離の差は 2a となる。また、双曲線には2つの漸近線が存在しており、 である。漸近線が直交している、すなわち a.

新しい!!: 射影幾何学と双曲線 · 続きを見る »

射影多様体

代数幾何学において,代数閉体 上の射影多様体(しゃえいたようたい,projective variety)とは, 上の( 次元)射影空間 の部分集合であって,素イデアルを生成する 係数 変数斉次多項式の有限族の零点集合として書けるものをいう.そのようなイデアルは多様体の定義イデアルと呼ばれる.あるいは同じことだが,代数多様体が射影的であるとは, のザリスキ閉部分多様体として埋め込めるときにいう. 1次元の射影多様体は射影曲線と呼ばれ,2次元だと射影曲面,余次元 1 だと射影超曲面と呼ばれる.射影超曲面は単独の斉次式の零点集合である. 射影多様体 が斉次素イデアル によって定義されているとき,商環 は の斉次座標環と呼ばれる.次数や次元のような基本的な不変量は,この次数環のヒルベルト多項式から読み取ることができる. 射影多様体は多くの方法で生じる.それらはであり,荒っぽく言えば「抜けている」点がない.逆は一般には正しくないが,はこの2つの概念の近い関係を記述する.多様体が射影的であることは直線束や因子を調べることによって示される. 射影多様体の顕著な性質の1つは,層コホモロジーの有限性である.滑らかな射影多様体に対して,セール双対性はポワンカレ双対性の類似と見なせる.それはまた射影曲線,すなわち 1 の射影多様体に対するリーマン・ロッホの定理を導く.射影曲線の理論は特に豊かで,曲線のによる分類を含む.高次元の射影多様体の分類問題は自然に射影多様体のモジュライの構成を導く.ヒルベルトスキームは所定のヒルベルト多項式をもつ の閉部分スキームをパラメトライズする.ヒルベルトスキームは,グラスマン多様体は特別な場合であるが,それ自身射影スキームでもある.幾何学的不変式論は別のアプローチを提供する.古典的なアプローチはタイヒミュラー空間やを含む. 古典にさかのぼる特に豊かな理論が,複素射影多様体,すなわち を定義する多項式が複素係数を持つ場合にある.大まかには,GAGA の原理により,射影複素解析空間(あるいは多様体)の幾何学は射影複素多様体の幾何学と等しい.例えば, 上の正則ベクトル束(より一般に連接解析的層)の理論は,代数的ベクトル束の理論と一致する.Chow の定理により,射影空間の部分集合が正則関数の族の零点集合であることと斉次多項式の零点集合であることは同値である.複素射影多様体に対する解析的な手法と代数的な手法の組合せはホッジ理論のような分野に通じる..

新しい!!: 射影幾何学と射影多様体 · 続きを見る »

射影変換

射影幾何学において、n 次元射影空間の射影変換とは、射影空間の同型写像である。.

新しい!!: 射影幾何学と射影変換 · 続きを見る »

射影平面

数学における射影平面(しゃえいへいめん、projective plane)は、初等的な平面の概念を拡張する幾何学的な構成である。通常の平面においては、二直線は典型的には一つの点で交わるが、特定の直線の組(平行線)については交わりを持たない。一つの見方として、射影平面は、通常の平面に平行線の交点として「無限遠点」を追加したものになっている。従って、射影平面では任意の相異なる二直線がただ一点において交わる。 射影平面の定義としてよく用いられるものが二種類ある。ひとつは線型代数学から来るもので、この場合の射影平面は、適当なに対する等質空間として与えられる。この場合の重要な例として、 および が挙げられる。後者はもっと一般のおよび有限幾何学の立場で定義することもできる。これは平面幾何学の接続的性質の研究に適している。 射影平面の概念は、もっと高次元の射影空間の概念に一般化される。射影平面は二次元の射影空間である。.

新しい!!: 射影幾何学と射影平面 · 続きを見る »

射影空間

射影空間(しゃえいくうかん、projective space) とは、その次元が n であるとき、(n + 1)個の「数」の比全体からなる空間の事をさす。比を構成する「数」をどんな体(あるいは環)にとるかによって様々な空間が得られる。非ユークリッド幾何学のひとつである射影幾何学がその概念の端緒であるが、射影空間は位相幾何学、微分幾何学、代数幾何学など幾何学のあらゆる分野にわたって非常に重要な概念である。.

新しい!!: 射影幾何学と射影空間 · 続きを見る »

射影直線

数学の特に射影幾何学における射影直線(しゃえいちょくせん、projective line)は、俗に言えば通常の直線に無限遠点と呼ばれる補助的な点を付け加えて延長したものである。これにより、初等幾何学における多くの定理の主張や証明が(特別な場合を除く必要が無くなり)簡素な記述になる。例えば、二つの相異なる射影直線は射影平面においてちょうど一点において交わる(「平行」な場合は存在しない)。 射影直線の定式化には同値な多くの方法が存在する。もっとも広く用いられるのは、射影直線を二次元ベクトル空間内の一次元部分線型空間全体の成す集合として定義するものである。これはより一般の射影空間の定義の特別の場合になっている。.

新しい!!: 射影幾何学と射影直線 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 射影幾何学と不変量 · 続きを見る »

平行

初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためにはそれらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはの性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。.

新しい!!: 射影幾何学と平行 · 続きを見る »

二次曲面

二次超曲面(にじちょうきょくめん、quadric surface)とは、円錐曲線の概念を一般次元ユークリッド空間 Rn に拡張したものであり、2次多項式の零点集合として表されるような超曲面のことをさす。3次元空間における二次超曲面は二次曲面ともよばれる。.

新しい!!: 射影幾何学と二次曲面 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 射影幾何学と代数学 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 射影幾何学と代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 射影幾何学と代数的位相幾何学 · 続きを見る »

代数曲線

数学における代数曲線(だいすうきょくせん、algebraic curve)、特にユークリッド幾何学における平面代数曲線 (plane algebraic curve) は、ユークリッド平面内の点集合であって、各点が適当な二変数多項式函数の零点として与えられるものを言う。.

新しい!!: 射影幾何学と代数曲線 · 続きを見る »

チャーン類

数学では、特に代数トポロジーや微分位相幾何学や代数幾何学では、チャーン類(Chern classes)は複素ベクトルバンドルに付随する特性類である。 チャーン類は、 で導入された。.

新しい!!: 射影幾何学とチャーン類 · 続きを見る »

ハロルド・スコット・マクドナルド・コクセター

ハロルド・スコット・マクドナルド・コクセター(Harold Scott MacDonald Coxeter, 1907年 - 2003年)は、イギリス生まれの数学者。.

新しい!!: 射影幾何学とハロルド・スコット・マクドナルド・コクセター · 続きを見る »

ポール・ディラック

ポール・エイドリアン・モーリス・ディラック(Paul Adrien Maurice Dirac, 1902年8月8日 - 1984年10月20日)はイギリスのブリストル生まれの理論物理学者。量子力学及び量子電磁気学の基礎づけについて多くの貢献をした。1933年にエルヴィン・シュレーディンガーと共にノーベル物理学賞を受賞している。 彼はケンブリッジ大学のルーカス教授職を務め、最後の14年間をフロリダ州立大学の教授として過ごした。.

新しい!!: 射影幾何学とポール・ディラック · 続きを見る »

メビウス変換

幾何学における平面上のメビウス変換(メビウスへんかん、Möbius transformation)は、 の形で表される複素一変数 に関する有理函数である。ここで、係数 は を満足する複素定数である。 幾何学的にはメビウス変換は、複素数平面を実二次元球面へ立体射影したものの上で回転と平行移動により各点の位置と向きを変更したものを再度平面に立体射影することによって得られる。これらの変換は「角度」を保ち(「等角性」)、任意の「直線または円」を「直線または円」に写す(「円円対応」)。 メビウス変換は複素射影直線上の射影変換であり、その全体はメビウス群と呼ばれる射影一般線型群 を成す。メビウス群およびその部分群は数学および物理学においてざまざまな応用を持つ。 メビウス変換の名はアウグスト・フェルディナント・メビウスの業績に因むものだが、ほかにも射影変換や一次分数変換(あるいは単に一次変換)などと呼ばれることもある。.

新しい!!: 射影幾何学とメビウス変換 · 続きを見る »

ユークリッド幾何学

ユークリッド幾何学(ユークリッドきかがく、Euclidean geometry)は、幾何学体系の一つであり、古代エジプトのギリシア系・哲学者であるエウクレイデスの著書『ユークリッド原論』に由来する。詳しい説明は『ユークリッド原論』の記事にある。.

新しい!!: 射影幾何学とユークリッド幾何学 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 射影幾何学とユークリッド空間 · 続きを見る »

ヨハネス・ケプラー

ヨハネス・ケプラー(Johannes Kepler、1571年12月27日 - 1630年11月15日)はドイツの天文学者。天体の運行法則に関する「ケプラーの法則」を唱えたことでよく知られている。理論的に天体の運動を解明したという点において、天体物理学者の先駆的存在だといえる。一方で数学者、自然哲学者、占星術師という顔ももつ。欧州補給機(ATV)2号機、アメリカ航空宇宙局の宇宙望遠鏡の名前に彼の名が採用されている。.

新しい!!: 射影幾何学とヨハネス・ケプラー · 続きを見る »

ラザール・カルノー

ラザール・ニコラ・マルグリット・カルノー(Lazare Nicolas Marguerite Carnot, 1753年5月13日 - 1823年8月2日)は、フランスの軍人、政治家、数学者。フランス革命戦争にあたってフランス軍の軍制改革を主導し、「勝利の組織者」と称えられた。政治的には穏健な共和主義者の立場を貫き、反対派からも尊敬されたという。また数学者としても功績を残した。著名な子孫たちとの区別のため大カルノーとも呼ばれる。.

新しい!!: 射影幾何学とラザール・カルノー · 続きを見る »

ロビン・ハーツホーン

ビン・ハーツホーン(Robin Hartshorne, 1938年3月15日 - )はアメリカの数学者。「ハートショーン(Hart-shorne)」と発音するとする説があるが、「ハーツホーン(Harts-horne)」が本人も認めている発音。 オスカー・ザリスキ、デヴィッド・マンフォード、ジャン=ピエール・セール、アレクサンドル・グロタンディークより代数幾何学を学ぶ。1958年秋、Putnamフェロー(Junior Fellow) となり、1963年、ジョン・コールマン・ムーア、オスカー・ザリスキの元でヒルベルト・スキームの連結性に関する論文により博士号を取得し、ハーバード大学フェローとなり、数年間講義を行った。1970年代にカリフォルニア大学バークレー校教授に就任し、現在退職し同大学名誉教授。 世界的に有名な代数幾何学の教科書の著者として有名。 趣味は尺八を吹くこと。.

新しい!!: 射影幾何学とロビン・ハーツホーン · 続きを見る »

ブレーズ・パスカル

ブレーズ・パスカル(Blaise Pascal、1623年6月19日 - 1662年8月19日)は、フランスの哲学者、自然哲学者、物理学者、思想家、数学者、キリスト教神学者である。 早熟の天才で、その才能は多分野に及んだ。ただし、短命であり、三十代で逝去している。死後『パンセ』として出版されることになる遺稿を自身の目標としていた書物にまとめることもかなわなかった。 「人間は考える葦である」などの多数の名文句やパスカルの賭けなどの多数の有名な思弁がある遺稿集『パンセ』は有名である。その他、パスカルの三角形、パスカルの原理、パスカルの定理などの発見で知られる。ポール・ロワヤル学派に属し、ジャンセニスムを代表する著作家の一人でもある。 かつてフランスで発行されていた500フラン紙幣に肖像が使用されていた。.

新しい!!: 射影幾何学とブレーズ・パスカル · 続きを見る »

パップス

アレキサンドリアのパップス(Pappus of Alexandria)はアレキサンドリア生まれのエジプトの数学者。4世紀の前半に活躍した。 彼はギリシャ数学を幅広く渉猟し、その技法を修得して8巻に及ぶ数学上の著作を残した。彼はその第七巻において、パップス=ギュルダンの定理と呼ばれる定理を証明しているが、これは後世の数学者に大きな影響を与えた。その他、射影幾何学におけるパップスの定理()など平面幾何学のいくつかの定理に彼の名前が残っている。 三角形の中線定理がパップスの中線定理と知られているが、実はこれはアポロニウスの定理である。.

新しい!!: 射影幾何学とパップス · 続きを見る »

パップスの定理

数学において「パップスの定理」と呼ばれる定理は複数のものが知られている。いずれもアレキサンドリアのパップスによって発見されたものである。.

新しい!!: 射影幾何学とパップスの定理 · 続きを見る »

パスカルの定理

パスカルの定理(パスカルのていり)は、ブレーズ・パスカルが16歳のときに発見した円錐曲線に関する定理である。 円に内接する六角形の対辺の延長線の交点は一直線上にある。更に拡張して、二次曲線上に異なる六つの点 P1 ~ P6をとると、直線 P1P2 と P4P5 の交点 Q1、P2P3 と P5P6 の交点 Q2、P3P4 と P6P1 の交点 Q3 は同一直線上にある。 定理の証明の一つはうまく補助円を書くことで円の性質と三角形の相似だけで解くことができる。補助円を使わない証明も存在する。ブレーズ・パスカルの証明は歴史に残されていない。 この定理の双対、ブリアンションの定理によるとPiにおける接線と Pj における接線の交点を Rij とすると、3 直線 R12R45、R23R56、R34R61 は一点で交わる。 Category:射影幾何学 Category:数学に関する記事 Category:円錐曲線 ていり.

新しい!!: 射影幾何学とパスカルの定理 · 続きを見る »

デザルグの定理

デザルグの定理(デザルグの-ていり、théorème de Desargues)とは、ジラール・デザルグが証明した、空間内の二つの三角形の相互の関係に関するアフィン幾何学(ユークリッド幾何学)および射影幾何学の定理である。 パスカルの定理とともに射影幾何学の基本定理の一つとして知られる。.

新しい!!: 射影幾何学とデザルグの定理 · 続きを見る »

フィリッポ・ブルネレスキ

ブルネレスキ像 フィリッポ・ブルネッレスキ(Filippo Brunelleschi, 1377年 - 1446年4月15日)は、イタリアの金細工師、彫刻家、そしてルネサンス最初の建築家である。本名はフィリッポ・ディ・セル・ブルネッレスコ(Filippo di ser Brunellesco=ブルネッレスコ氏のフィリッポ)、ないしはフィリッポ・ディ・セル・ブルネッレスコ・デ・ラーピであるが、もっぱらその短縮形であるフィリッポ・ブルネッレスキの名で呼ばれる。主にフィレンツェで活動を行った。 彼は冗談や悪ふざけで他者をからかうことを楽しんだが、発想は鋭く、聡明で機智に富んだ。彫刻家としてはロレンツォ・ギベルティに遅れをとったが、サンタ・マリーア・デル・フィオーレ大聖堂のクーポラ建設によって絶大なる賞賛を得た。 遠近法の発明やオーダーの発見も、彼のものとされる。.

新しい!!: 射影幾何学とフィリッポ・ブルネレスキ · 続きを見る »

フェリックス・クライン

フェリックス・クリスティアン・クライン(Felix Christian Klein, 1849年4月25日 - 1925年6月22日)は、ドイツの数学者。群論と幾何学との関係、関数論などの発展に寄与した。クラインの壺の考案者。ダフィット・ヒルベルトやアンリ・ポアンカレといった次の世代の数学者に影響を与えた。.

新しい!!: 射影幾何学とフェリックス・クライン · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: 射影幾何学とダフィット・ヒルベルト · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: 射影幾何学とベルンハルト・リーマン · 続きを見る »

アルフレッド・ノース・ホワイトヘッド

アルフレッド・ノース・ホワイトヘッド (Alfred North Whitehead、1861年2月15日 - 1947年12月30日)は、イギリスの数学者、哲学者である。論理学、科学哲学、数学、高等教育論、宗教哲学などに功績を残す。ケンブリッジ大学、ユニバーシティ・カレッジ・ロンドン、インペリアル・カレッジ・ロンドン、ハーバード大学の各大学において、教鞭をとる。哲学者としての彼の業績は、ハーバード大学に招聘されてからが主体であり、その時既に63歳であった。.

新しい!!: 射影幾何学とアルフレッド・ノース・ホワイトヘッド · 続きを見る »

アフィン空間

数学において、アフィン空間(あふぃんくうかん、affine space, アファイン空間とも)または擬似空間(ぎじくうかん)とは、幾何ベクトルの存在の場であり、ユークリッド空間から絶対的な原点・座標と標準的な長さや角度などといった計量の概念を取り除いたアフィン構造を抽象化した幾何学的構造である。(代数的な)ベクトル空間からどの点が原点であるかを忘れたものと考えることもできる。 1次元のアフィン空間はアフィン直線、2次元のアフィン空間はと呼ばれる。.

新しい!!: 射影幾何学とアフィン空間 · 続きを見る »

エルランゲン・プログラム

ルランゲン・プログラムもしくはエアランゲン・プログラム(Erlanger Programm, Erlangen program)とは、1872年フェリックス・クラインが23歳でエルランゲン大学の教授職に就く際、幾何学とは何か、どのように研究すべきものかを示した指針である。日本語ではエルランゲン(の)目録と表記される場合もある。.

新しい!!: 射影幾何学とエルランゲン・プログラム · 続きを見る »

ガスパール・モンジュ

パール・モンジュ (、1746年5月9日-1818年7月28日)は、フランスの数学者・科学者・工学者・貴族。エコール・ポリテクニークの創設者。 今日知られる微分幾何学を開発し、曲面方程式や曲線の微分方程式から3次元空間への曲面曲率線の概念を導入し幾何学的形状を解析するなど、微積分方面による曲面の研究で名高い。従来から製図で使用されていた画法幾何を、ジラール・デザルグの定理やパスカルの定理に基づく遠近法を研究し、三角法や射影幾何学、図学という学問・学術にする体系再編に貢献、この画法幾何学をベースにした解析手法は応用力学にまで取り入れられ構造解析の、また透視画法や投影図法が現在も製図法の骨子になっている。当時の度量衡を確立し、この他にモンジュ・アンペールの方程式や群論や輸送最適論などの研究などでも知られる。 軍事技術関連では、大砲鋳造や火薬製造法などを開発している。フランス革命時、海軍大臣、元老院議長を務めていた。ヴァレ大学にガスパール・モンジュ学院、また切手の肖像画の他、フレンチライラックやバラにも彼の名がつけられた花がある。.

新しい!!: 射影幾何学とガスパール・モンジュ · 続きを見る »

コンパス

ンパス コンパス(蘭: 、英: )は、円を描いたり、線分の長さを移すのに用いる文房具・製図器具である 文部科学省。中心機構で接し自由な角度に開閉できる2本の脚からなる。ぶんまわし(規、ぶん回し)、両脚器(りょうきゃくき)、円規(えんき)ともいう。また、かつて根発子(コンハッス)と宛字されたこともある。 「コンパス」の原語はオランダ語の kompas であるが、これは現代オランダ語で方位磁針のことを示す。近代オランダでは passer と言う。 コンパスは円周を描くために必須の道具ではなく、『支点とそこから等しい距離を維持したまま移動できる状態の筆記具』(例: 輪になった紐とペン、それから針もしくはあるいは棒、画鋲など)があれば代用ができる。 日本の学習指導要領では小学校第3学年で扱い始める。.

新しい!!: 射影幾何学とコンパス · 続きを見る »

ジャン=ヴィクトル・ポンスレ

ャン=ヴィクトル・ポンスレ(Jean-Victor Poncelet, 1788年7月1日 – 1867年12月22日)は、フランスの数学者、工学者。射影幾何学の復活に貢献した。.

新しい!!: 射影幾何学とジャン=ヴィクトル・ポンスレ · 続きを見る »

ジュゼッペ・ペアノ

ュゼッペ・ペアノ(ペアーノ、Giuseppe Peano, 1858年8月27日、ピエモンテ州クーネオ – 1932年4月20日、トリノ)はイタリアの数学者。トリノ大学教授。自然数の公理系 (ペアノの公理)、ペアノ曲線の考案者として知られる。 人工言語の一つである無活用ラテン語を提唱したことでも知られる。.

新しい!!: 射影幾何学とジュゼッペ・ペアノ · 続きを見る »

ジラール・デザルグ

ラール・デザルグ(Girard Desargues, 1591年2月21日 - 1661年10月)は、フランス リヨン出身の数学者、建築家。 無限遠点の概念など射影幾何学の基本概念を確立し、射影幾何学の最初の定理であるデザルグの定理を証明した。 しかし射影幾何学は非ユークリッド幾何学へと繋がる新たな概念であり、独創的な定理を新しい用語で表した彼の研究は、ほとんど他人から理解されなかった。 交流のあったパスカル(パスカルの定理はデザルグの円錐曲線に関する研究の基盤となっている)や、デカルト (解析幾何学を提唱した)は理解し励ましたが、結局、約150年後にガスパール・モンジュとその門下のポンスレによって再興されるまで、ほとんど忘れ去られてしまった。.

新しい!!: 射影幾何学とジラール・デザルグ · 続きを見る »

ジーノ・ファノ

ーノ・ファノ(Gino Fano、1871年1月5日 - 1952年11月8日)は、イタリアの数学者である。有限幾何学の創始者として知られる。 彼はイタリアのマントヴァで生まれ、ヴェローナで死亡した。 彼は射影幾何学と代数幾何学の分野で様々な貢献をした。幾何学基礎論における彼の研究は、ダフィット・ヒルベルトの類似した、しかしより一般的な研究に10年ほど先行している。 彼は物理学者と数学者の父であり、物理学者で数学者のの叔父である。.

新しい!!: 射影幾何学とジーノ・ファノ · 続きを見る »

円錐曲線

円錐曲線(えんすいきょくせん、conic curve, conic section; 円錐断面)とは、円錐面を任意の平面で切断したときの断面としてえられる曲線群の総称である。.

新しい!!: 射影幾何学と円錐曲線 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 射影幾何学と全単射 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: 射影幾何学と公理 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 射影幾何学と線型代数学 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 射影幾何学と群 (数学) · 続きを見る »

環上の射影直線

数学における環上の射影直線(しゃえいちょくせん、projective line over a ring)は体上の射影直線を一般化するものである。.

新しい!!: 射影幾何学と環上の射影直線 · 続きを見る »

点 (数学)

数学における点(てん、point)の概念は、今日では非常に広範な意味を持つものとして扱われる。歴史的には、「点」というものは、古代ギリシアの幾何学者が想定したように、直線・平面・空間を形作る根元的な「構成要素」、「原子」となるべきものであり、直線、平面、空間は点からなる集合(点集合)ということになる。しかし、19世紀の終わりごろにゲオルク・カントールによる集合論の創始と、それに続く数多くの「数学的構造」の出現があって以降は、その文脈で「空間」と呼ぶことにした任意の集合における任意の元という意味で「点」という用語が用いられる(例えば、距離空間の点、位相空間の点、射影空間の点、など)。古代ギリシア人は「点」と「数」とを区別して扱ったが、それとは対照的に、この文脈では「数(実数)」は実数直線上の点であるという言い回しを用いることができる。 つまり数学者にとって最も一般の意味での「点」とは、集合が「空間」と捉えられかつ公理によって規定される特定の性質を備えているという状況さえあれば十分で、そのような「空間」の任意の元がすなわち「点」なのである。したがって、今日における術語「空間」は全体集合に、また術語「点」は元に、ほぼ同義である。考えている問題がもはや幾何学とは何の関係もないような場合でさえ、何らかの示唆的な期待によって「点」や「空間」という語が用いられている。.

新しい!!: 射影幾何学と点 (数学) · 続きを見る »

無限遠点

無限遠点(むげんえんてん、point at infinity)とは、限りなく遠いところ(無限遠)にある点のことである。日常的な意味の空間を考えている限り無限遠点は仮想的な概念でしかないが、無限遠点を実在の点とみなせるように空間概念を一般化することができる。そのようにすることで理論的な見通しが立てやすくなったり、空間概念の応用の幅が拡がったりする。 例えば、通常、平面上の二直線の位置関係は一点で交わるか平行であるかのどちらかであるとされている。これを、平行な二直線は無限遠点で交わるのだと考えることにすると、平面上の二直線は必ず一点で交わるという簡明な性質が得られることになる。(この例について、詳しくは非ユークリッド幾何学などを参照のこと) ユークリッド平面上の互いに平行な 2 直線の交点のことである。厳密にはこの交点はユークリッド平面の中には存在しないから、無限遠点はユークリッド平面の外に存在する。 無限遠点の全体は無限遠直線を描く。.

新しい!!: 射影幾何学と無限遠点 · 続きを見る »

直線

線の正確な表示(直線は太さを持たない図形である為、厳密に正しく表示した場合、視覚では確認不能となる) 線分 直線(ちょくせん、line)とは、太さを持たない幾何学的な対象である曲線の一種で、どこまでもまっすぐ無限に伸びて端点を持たない。まっすぐな線には直線の他に、有限の長さと両端を持つ線分(せんぶん、line segment、segment)と、一つの端点を始点として無限にまっすぐ伸びた半直線(はんちょくせん、ray、half-line)がある。.

新しい!!: 射影幾何学と直線 · 続きを見る »

遠近法

遠近法(えんきんほう、perspective)は、広義には絵画や作図などにおいて、遠近感を持った表現を行う手法を指す。ここでは特に、目に映る像を平面に正確に写すための技法である「透視図法」(透視法、線遠近法ともいう)について記す。 透視図法によって描かれた図のことを透視図という。英語では「遠近法」「透視図法」「透視図」などを総称して perspective(パースペクティブ)といい、日本では遠近法、透視図のことをパースと称することが多い。(例:「建築パース」「パースがきつい」など) 遠近法の2大特徴として.

新しい!!: 射影幾何学と遠近法 · 続きを見る »

非ユークリッド幾何学

非ユークリッド幾何学(ひユークリッドきかがく、non-Euclidean geometry)は、ユークリッド幾何学の平行線公準が成り立たないとして成立する幾何学の総称。非ユークリッドな幾何学の公理系を満たすモデルは様々に構成されるが、計量をもつ幾何学モデルの曲率を一つの目安としたときの両極端の場合として、至る所で負の曲率をもつ双曲幾何学と至る所で正の曲率を持つ楕円幾何学(殊に球面幾何学)が知られている。 ユークリッドの幾何学は、至る所曲率0の世界の幾何であることから、双曲・楕円に対して放物幾何学と呼ぶことがある。大雑把に言えば「平面上の幾何学」であるユークリッド幾何学に対して、「曲面上の幾何学」が非ユークリッド幾何学である。.

新しい!!: 射影幾何学と非ユークリッド幾何学 · 続きを見る »

解析幾何学

初等幾何学における解析幾何学(かいせききかがく、analytic geometry)あるいは座標幾何学(ざひょうきかがく、coordinate geometry)、デカルト幾何学(デカルトきかがく、Cartesian geometry)は、座標を用いて代数的解析幾何学という名称における接頭辞「解析」は、微積分学を含む現代的な解析学という意味の「解析」ではなく、発見的な代数的手法によるものであることを示唆するものである。(解析幾何学 - コトバンク)に図形を調べる幾何学をいう。座標を用いるという点において、(より古典的な、ユークリッドの原論にもあるような)点や直線などがどのような公理に従うかということのみによって図形を調べる とは対照的である。座標を利用することにより、図形のもつ性質を座標のあいだにあらわれる関係式として特徴づけたり、数や式として図形を取り扱ったりすることができる。 ふつうは(二次元)平面上の点、直線などを扱う(平面解析幾何)か(三次元)空間内のそれらを扱う(立体解析幾何)。.

新しい!!: 射影幾何学と解析幾何学 · 続きを見る »

計量

計量(けいりょう、measuring, measurement)は、.

新しい!!: 射影幾何学と計量 · 続きを見る »

超平面

初等幾何学における超平面(ちょうへいめん、hyperplane)の概念は、二次元の平面をそれ以外の次元へ一般化するものである。''n''-次元空間における超平面とは、次元が n − 1 の平坦な部分空間をいう。その特質として、一つの超平面は全体空間を二つの半空間に分割する。.

新しい!!: 射影幾何学と超平面 · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 射影幾何学と距離空間 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 射影幾何学と量子力学 · 続きを見る »

楕円

楕円(だえん、橢円とも。ellipse)とは、平面上のある2定点からの距離の和が一定となるような点の集合から作られる曲線である。基準となる2定点を焦点という。円錐曲線の一種である。 2つの焦点が近いほど楕円は円に近づき、2つの焦点が一致したとき楕円はその点を中心とした円になる。そのため円は楕円の特殊な場合であると考えることもできる。 楕円の内部に2焦点を通る直線を引くとき、これを長軸という。長軸の長さを長径という。長軸と楕円との交点では2焦点からの距離の差が最大となる。また、長軸の垂直二等分線を楕円の内部に引くとき、この線分を短軸という。短軸の長さを短径という。.

新しい!!: 射影幾何学と楕円 · 続きを見る »

楕円幾何学

楕円幾何学(だえんきかがく、英語:elliptic geometry)は、まっすぐな空間(ユークリッド空間、放物幾何的空間)ではなく、ある特徴(至る所で正の曲率)を持つ曲がった空間の中における幾何学を論じた数学の一分野。リーマンが球面モデルを考えたため、楕円幾何学の事を指してリーマン幾何学と呼ぶこともあるが、一般にはリーマン幾何学とは別のものである。.

新しい!!: 射影幾何学と楕円幾何学 · 続きを見る »

有限幾何学

有限幾何学(ゆうげんきかがく)とは有限個の点から構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「線」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。 ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。.

新しい!!: 射影幾何学と有限幾何学 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: 射影幾何学と斜体 (数学) · 続きを見る »

放物線

放物線(ほうぶつせん、希:παραβολή「parabolē」、羅、英: parabola、独: Parabel)とは、その名の通り地表(つまり重力下)で投射した物体の運動(放物運動)が描く軌跡のことである。 放物線をその対称軸を中心として回転させた曲面を放物面という。.

新しい!!: 射影幾何学と放物線 · 続きを見る »

数え上げ幾何学

数学では数え上げ幾何学(enumerative geometry)は代数幾何学の一分野であり、主に交叉理論により、幾何学的な問題の解の数を数え上げることに関連している。.

新しい!!: 射影幾何学と数え上げ幾何学 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 射影幾何学と数学 · 続きを見る »

ここにリダイレクトされます:

射影幾何投影幾何学

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »