ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

古典物理学

索引 古典物理学

古典物理学(こてんぶつりがく、Physics in the Classical Limit)とは、量子力学を含まない物理学。その多くは量子力学が発達する前の原理に基づいて体系だてられたものだが、量子力学と同時またはそれ以降に構築された特殊相対性理論、一般相対性理論も含まれる。現代物理学の対義語では必ずしもないので注意を要する。.

24 関係: 原子古典力学古典電磁気学宇宙対応原理一般相対性理論マクスウェルの方程式ハミルトン力学ラグランジュ力学プランク定数ニュートン力学分子エーレンフェストの定理カオス理論現代物理学熱力学物理学特殊相対性理論超流動量子力学量子デコヒーレンス電磁波決定論

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 古典物理学と原子 · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: 古典物理学と古典力学 · 続きを見る »

古典電磁気学

古典電磁気学または古典電気力学は、電荷と電流の間の電磁気力について研究する理論物理学の一分野である。対応する長さや電磁場の強さが量子力学的効果に影響されないほど十分大きければ、電磁現象をうまく説明できる(量子電磁力学参照)。古典電磁気学の基礎物理学的側面は、『ファインマン物理学』、パノフスキーらの『電磁気学』、『ジャクソン電磁気学』などで紹介されている。 電磁気学は19世紀に発展したが、その中でも特にジェームズ・クラーク・マクスウェルが重要な役割を果たした。電磁気学の歴史については、パウリの『相対性理論』、数学者E・T・ホイッタカーの著書、A・パイスのアインシュタインの伝記などに詳しい。 Ribarič and Šušteršič (1990)では、1903年から1989年までの約240の文献を参照・研究し、古典電気力学の分野で現代においても未解決の1ダースほどの問題を提示している。ジャクソンが古典電気力学最大の問題としたのは、基本方程式について2つの極端な場合においてしか解が得られていないという点である。すなわち、電荷または電流が与えられ、そこから電磁場を計算して求める場合と、外部の電磁場が与えられ、荷電粒子や電流の動きを計算して求める場合である。時折、この2つを組み合わせることもある。しかし、その場合の取り扱いは段階的に行われる。まず、外部電磁場内の荷電粒子の動きをそれ自身の電磁放射を無視して計算し、次いでその軌道に基づいてその電荷の電磁放射を計算する。このような電気力学における問題の扱い方は近似的な妥当性しか持ち得ないことは明らかである。電荷と電流の相互作用やそれらが放射する電磁場は無視することができず、結果としてそうした電気力学系についての我々の理解は限定的なものとなっている。1世紀に渡る努力にもかかわらず、広く受け入れられた荷電粒子の古典的運動方程式は未だに存在しないし、関連する実験データも存在しない。.

新しい!!: 古典物理学と古典電磁気学 · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: 古典物理学と宇宙 · 続きを見る »

対応原理

物理学での対応原理(correspondence principle)は、量子数が極端に増加したときに、量子力学によって記述される系(system)の性質は、古典力学での結果に対応するという原理である。 つまり、電子軌道(orbital)とエネルギーが大きい場合に量子力学による計算結果は、古典力学での計算結果と一致しなければならないというものである。.

新しい!!: 古典物理学と対応原理 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 古典物理学と一般相対性理論 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 古典物理学とマクスウェルの方程式 · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: 古典物理学とハミルトン力学 · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: 古典物理学とラグランジュ力学 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: 古典物理学とプランク定数 · 続きを見る »

ニュートン力学

ニュートン力学(ニュートンりきがく、)は、アイザック・ニュートンが、運動の法則を基礎として構築した、力学の体系のことである『改訂版 物理学辞典』培風館。。 「ニュートン力学」という表現は、アインシュタインの相対性理論、あるいは量子力学などと対比して用いられる。.

新しい!!: 古典物理学とニュートン力学 · 続きを見る »

分子

分子(ぶんし)とは、2つ以上の原子から構成される電荷的に中性な物質を指すIUPAC.

新しい!!: 古典物理学と分子 · 続きを見る »

エーレンフェストの定理

ーレンフェストの定理(エーレンフェストのていり、)は、量子力学における重要な定理のひとつで、大まかにいえば『シュレーディンガー方程式の期待値を取ることで古典力学における運動方程式(に大変よく似たもの)が得られる』ことを主張している。この定理はオランダの物理学者ポール・エーレンフェストにより提唱され、量子力学と古典力学の対応を論じるときによく用いられる。.

新しい!!: 古典物理学とエーレンフェストの定理 · 続きを見る »

カオス理論

論(カオスりろん、、、)は、力学系の一部に見られる、数的誤差により予測できないとされている複雑な様子を示す現象を扱う理論である。カオス力学ともいう。 ここで言う予測できないとは、決してランダムということではない。その振る舞いは決定論的法則に従うものの、積分法による解が得られないため、その未来(および過去)の振る舞いを知るには数値解析を用いざるを得ない。しかし、初期値鋭敏性ゆえに、ある時点における無限の精度の情報が必要であるうえ、(コンピューターでは無限桁を扱えないため必然的に発生する)数値解析の過程での誤差によっても、得られる値と真の値とのずれが増幅される。そのため予測が事実上不可能という意味である。.

新しい!!: 古典物理学とカオス理論 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 古典物理学と光 · 続きを見る »

現代物理学

代物理学(げんだいぶつりがく)は、おおむね20世紀以降の物理学のこと。相対性理論および量子力学以後の物理学を指す。.

新しい!!: 古典物理学と現代物理学 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: 古典物理学と熱力学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 古典物理学と物理学 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: 古典物理学と特殊相対性理論 · 続きを見る »

超流動

超流動(英語:superfluidity)とは、極低温において液体ヘリウムの流動性が高まり、容器の壁面をつたって外へ溢れ出たり、原子一個が通れる程度の隙間に浸透したりする現象で、量子効果が巨視的に現れたものである。1937年、ヘリウム4が超流動性を示すことをピョートル・カピッツァが発見した。.

新しい!!: 古典物理学と超流動 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 古典物理学と量子力学 · 続きを見る »

量子デコヒーレンス

量子デコヒーレンス(りょうしデコヒーレンス)は、量子系の干渉が環境との相互作用によって失われる現象。デコヒーレンス。.

新しい!!: 古典物理学と量子デコヒーレンス · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: 古典物理学と電磁波 · 続きを見る »

決定論

決定論(けっていろん、determinism, determinare)とは、あらゆる出来事は、その出来事に先行する出来事のみによって決定している、とする立場。 対立する世界観や仮説は「非決定論」と呼ばれる。.

新しい!!: 古典物理学と決定論 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »