ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

亜酸化物

索引 亜酸化物

亜酸化物 (あさんかぶつ、Suboxide) は酸化物の分類の一つである。亜酸化物は“通常の”酸化物と比較した際に各原子の電気陰性度が高いものを指すSimon, A. ”Group 1 and 2 Suboxides and Subnitrides — Metals with Atomic Size Holes and Tunnels” Coordination Chemistry Reviews 1997, volume 163, Pages 253–270.

18 関係: 亜酸化炭素ナトリウムバリウムルビジウムオクテット則クムレンクラスター (物質科学)ケテンケイ素ジシアノアセチレンセシウム窒素非局在化電子酸化物酸素電気陰性度X線回折正八面体

亜酸化炭素

亜酸化炭素(あさんかたんそ、carbon suboxide)とは、3個の炭素と2個の酸素が4つの集積二重結合をもって連なったクムレン型化合物である。示性式は O.

新しい!!: 亜酸化物と亜酸化炭素 · 続きを見る »

ナトリウム

ナトリウム(Natrium 、Natrium)は原子番号 11、原子量 22.99 の元素、またその単体金属である。元素記号は Na。アルカリ金属元素の一つで、典型元素である。医薬学や栄養学などの分野ではソジウム(ソディウム、sodium )とも言い、日本の工業分野では(特に化合物中において)曹達(ソーダ)と呼ばれる炭酸水素ナトリウムを重炭酸ソーダ(重曹)と呼んだり、水酸化ナトリウムを苛性ソーダと呼ぶ。また、ナトリウム化合物を作ることから日本曹達や東洋曹達(現東ソー)などの名前の由来となっている。。毒物及び劇物取締法により劇物に指定されている。.

新しい!!: 亜酸化物とナトリウム · 続きを見る »

バリウム

バリウム(barium )は、原子番号 56 の元素。元素記号は Ba。アルカリ土類金属のひとつで、単体では銀白色の軟らかい金属。他のアルカリ土類金属元素と類似した性質を示すが、カルシウムやストロンチウムと比べ反応性は高い。化学的性質としては+2価の希土類イオンとも類似した性質を示す。アルカリ土類金属としては密度が大きく重いため、ギリシャ語で「重い」を意味する βαρύς (barys) にちなんで命名された。ただし、金属バリウムの比重は約3.5であるため軽金属に分類される。地殻における存在量は豊富であり、重晶石(硫酸バリウム)などの鉱石として産出する。確認埋蔵量の48.6%を中国が占めており、生産量も50%以上が中国によるものである。バリウムの最大の用途は油井やガス井を採掘するためのにおける加重剤であり、重晶石を砕いたバライト粉が利用される。 硫酸バリウム以外の可溶性バリウム塩には毒性があり、多量のバリウムを摂取するとカリウムチャネルをバリウムイオンが阻害することによって神経系への影響が生じる。そのためバリウムは毒物及び劇物取締法などにおいて規制の対象となっている。.

新しい!!: 亜酸化物とバリウム · 続きを見る »

ルビジウム

ルビジウム(rubidium)は原子番号 37 の元素記号 Rb で表される元素である。アルカリ金属元素の1つで、柔らかい銀白色の典型元素であり、原子量は85.4678。ルビジウム単体は、例えば空気中で急速に酸化されるなど非常に反応性が高く、他のアルカリ金属に似た特性を有している。ルビジウムの安定同位体は 85Rb ただ1つのみである。自然界に存在するルビジウムのおよそ28%を占める同位体の 87Rb は放射能を有しており、半減期はおよそ490億年である。この半減期の長さは、推定された宇宙の年齢の3倍以上の長さである。 1861年に、ドイツの化学者ロベルト・ブンゼンとグスタフ・キルヒホフが新しく開発されたフレーム分光法によってルビジウムを発見した。ルビジウムの化合物は化学および電子の分野で利用されている。金属ルビジウムは容易に気化し、利用しやすいスペクトルの吸収域を有しているため、原子のレーザ操作のための標的としてしばしば用いられる。ルビジウムの生体に対する必要性は知られていない。しかし、ルビジウムイオンはセシウムのように、カリウムイオンと類似した方法で植物や生きた動物の細胞によって活発に取り込まれる。.

新しい!!: 亜酸化物とルビジウム · 続きを見る »

オクテット則

テット則(-そく、Octet rule)は原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則。オクテット説(-せつ)、八隅説(はちぐうせつ)ともいう。 第二周期の元素や第三周期のアルカリ金属、アルカリ土類金属までにしか適用できないが、多くの有機化合物に適用できる便利な規則である(→18電子則)。ただし、カルボカチオンや無機化合物を中心とする多くの例外も存在する。.

新しい!!: 亜酸化物とオクテット則 · 続きを見る »

クムレン

ムレン とは有機化合物群のひとつで、IUPACの定義によれば3個もしくはそれ以上の集積二重結合を持つ不飽和炭素化合物の呼称。1,2,3-ブタトリエン (H2C.

新しい!!: 亜酸化物とクムレン · 続きを見る »

クラスター (物質科学)

ラスター (cluster) は集合体や塊を指す英語であるが、物質科学においては同種の原子あるいは分子が相互作用によって数個~数十個、もしくはそれ以上の数が結合した物体を指す。 それぞれの原子や分子同士を結びつける相互作用は、ファンデルワールス力や静電的相互作用、水素結合、金属結合、共有結合などが挙げられている。 クラスターのうち、電荷を帯びたものをクラスターイオンと呼ぶ。 代表的なクラスターとして、炭素原子60個が結合してサッカーボール状の構造を持つC60フラーレンがある。C60フラーレンは共有結合クラスターに分類される。 これらは、いわゆるバルクとも孤立した原子・分子とも違う状態であり(少数多体系・有限多体系と呼ばれる)、バルク-孤立原子・分子の間の新しい物質相であると考えられている。クラスターは、そのサイズに依存した特異的性質を示し、新規磁性・触媒材料など、応用面でも注目されている。.

新しい!!: 亜酸化物とクラスター (物質科学) · 続きを見る »

ケテン

テン類の構造式。 ケテン (ketene) とは、構造式 CH2.

新しい!!: 亜酸化物とケテン · 続きを見る »

ケイ素

イ素(ケイそ、珪素、硅素、silicon、silicium)は、原子番号 14 の元素である。元素記号は Si。原子量は 28.1。「珪素」「硅素」「シリコン」とも表記・呼称される。地球の主要な構成元素のひとつ。半導体部品は非常に重要な用途である。 地殻中に大量に存在するため鉱物の構成要素として重要であり、ケイ酸塩鉱物として大きなグループを形成している。これには Si-O-Si 結合の多様性を反映したさまざまな鉱物が含まれている。しかしながら生物とのかかわりは薄く、知られているのは、放散虫・珪藻・シダ植物・イネ科植物などにおいて二酸化ケイ素のかたちでの骨格への利用に留まる。栄養素としての必要性はあまりわかっていない。炭素とケイ素との化学的な類似から、SF などではケイ素を主要な構成物質とするケイ素生物が想定されることがある。 バンドギャップが常温付近で利用するために適当な大きさであること、ホウ素やリンなどの不純物を微量添加させることにより、p型半導体、n型半導体のいずれにもなることなどから、電子工学上重要な元素である。半導体部品として利用するためには高純度である必要があり、このため精製技術が盛んに研究されてきた。現在、ケイ素は99.9999999999999 % (15N) まで純度を高められる。また、Si(111) 基板はAFMやSTMの標準試料としてよく用いられる。.

新しい!!: 亜酸化物とケイ素 · 続きを見る »

ジシアノアセチレン

アノアセチレン(Dicyanoacetylene)は、炭素と窒素から構成される化学式C4N2の分子である。N≡C-C≡C-C≡Nの直線構造を持ち、三重結合と単結合が交互に現れる。2つの水素がシアン化物に置換されたアセチレンと見ることもできる。 室温では、透明な液体である。合成反応がエネルギー的に大きい吸熱反応であるため、爆発的に分解して炭素と窒素に戻る。また酸素中では明るく青白く光り、全ての化学物質の中で最も高い5260 Kの炎を上げる。.

新しい!!: 亜酸化物とジシアノアセチレン · 続きを見る »

セシウム

ウム (caesium, caesium, cesium) は原子番号55の元素。元素記号は、「灰青色の」を意味するラテン語の caesius カエシウスより Cs。軟らかく黄色がかった銀色をしたアルカリ金属である。融点は28 で、常温付近で液体状態をとる五つの金属元素のうちの一つである。 セシウムの化学的・物理的性質は同じくアルカリ金属のルビジウムやカリウムと似ていて、水と−116 で反応するほど反応性に富み、自然発火する。安定同位体を持つ元素の中で、最小の電気陰性度を持つ。セシウムの安定同位体はセシウム133のみである。セシウム資源となる代表的な鉱物はポルックス石である。 ウランの代表的な核分裂生成物として、ストロンチウム90と共にセシウム135、セシウム137が、また原子炉内の反応によってセシウム134が生成される。この中でセシウム137は比較的多量に発生しベータ線を出し半減期も約30年と長く、放射性セシウム(放射性同位体)として、核兵器の使用(実験)による死の灰(黒い雨)や原発事故時の「放射能の雨」などの放射性降下物として環境中の存在や残留が問題となる。 2人のドイツ人化学者、ロベルト・ブンゼンとグスタフ・キルヒホフは、1860年に当時の新技術であるを用いて鉱泉からセシウムを発見した。初めての応用先は真空管や光電素子のであった。1967年、セシウム133の発光スペクトルの比振動数が国際単位系の秒の定義に選ばれた。それ以来、セシウムは原子時計として広く使われている。 1990年代以降のセシウムの最大の応用先は、ギ酸セシウムを使ったである。エレクトロニクスや化学の分野でもさまざまな形で応用されている。放射性同位体であるセシウム137は約30年の半減期を持ち、医療技術、工業用計量器、水文学などに応用されている。.

新しい!!: 亜酸化物とセシウム · 続きを見る »

窒素

素(ちっそ、nitrogen、nitrogenium)は原子番号 7 の元素。元素記号は N。原子量は 14.007。空気の約78.08 %を占めるほか、アミノ酸をはじめとする多くの生体物質中に含まれており、地球のほぼすべての生物にとって必須の元素である。 一般に「窒素」という場合は、窒素の単体である窒素分子(窒素ガス、N2)を指すことが多い。窒素分子は常温では無味無臭の気体として安定した形で存在する。また、液化した窒素分子(液体窒素)は冷却剤としてよく使用されるが、液体窒素温度 (-195.8 ℃, 77 K) から液化する。.

新しい!!: 亜酸化物と窒素 · 続きを見る »

非局在化電子

化学において、非局在化電子(ひきょくざいかでんし、delocalized electron)は、単一の原子あるいは共有結合と結び付いていない分子、イオン、固体金属中の電子である。この用語は一般的に異なる分野では若干異なる意味を持つ。有機化学では、これは共役系および芳香族化合物における共鳴を意味する。固体物理学では、これは電気伝導を容易にする自由電子を意味する。量子化学では、これは複数の隣接する原子にわたって広がった分子軌道を意味する。.

新しい!!: 亜酸化物と非局在化電子 · 続きを見る »

酸化物

酸化物(さんかぶつ、oxide)は、酸素とそれより電気陰性度が小さい元素からなる化合物である。酸化物中の酸素原子の酸化数は−2である。酸素は、ほとんどすべての元素と酸化物を生成する。希ガスについては、ヘリウム (He)、ネオン (Ne) そしてアルゴン (Ar) の酸化物はいまだ知られていないが、キセノン (Xe) の酸化物(三酸化キセノン)は知られている。一部の金属の酸化物やケイ素の酸化物(ケイ酸塩)などはセラミックスとも呼ばれる。.

新しい!!: 亜酸化物と酸化物 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 亜酸化物と酸素 · 続きを見る »

電気陰性度

電気陰性度(でんきいんせいど、electronegativity)は、分子内の原子が電子を引き寄せる強さの相対的な尺度であり、ギリシャ文字のχで表されるShriver & Atkins (2001), p.45。。 異種の原子同士が化学結合しているとする。このとき、各原子における電子の電荷分布は、当該原子が孤立していた場合と異なる分布をとる。これは結合の相手の原子からの影響によるものであり、原子の種類により電子を引きつける強さに違いが存在するためである。 この電子を引きつける強さは、原子の種類ごとの相対的なものとして、その尺度を決めることができる。この尺度のことを電気陰性度と言う。一般に周期表の左下に位置する元素ほど小さく、右上ほど大きくなる。.

新しい!!: 亜酸化物と電気陰性度 · 続きを見る »

X線回折

X線回折(エックスせんかいせつ、、XRD)は、X線が結晶格子で回折を示す現象である。 1912年にドイツのマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。 逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法や中性子回折法がある。.

新しい!!: 亜酸化物とX線回折 · 続きを見る »

正八面体

正八面体 正八面体(せいはちめんたい、regular octahedron)は立体の名称の1つ。空間を正三角形8枚で囲んだ形。.

新しい!!: 亜酸化物と正八面体 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »