ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ローレンツ空間

索引 ローレンツ空間

数学の解析学の分野におけるローレンツ空間(ローレンツくうかん、)は、1950年代にジョージ・ローレンツによって導入された概念で、よく知られた L^p 空間の一般化である。 ローレンツ空間は L^ と表される。L^ 空間のように、それは函数の「大きさ」に関する情報を表すノルム(正確には準ノルム)によって特徴づけられる。そのような函数の大きさに関する基本的な定性的概念として次の二つがある:その函数のグラフの高さがどの程度か、またそれがどの程度広がっているか、である。ローレンツノルムは、値域 (p) と定義域 (q) の両方について測度を指数的にリスケールすることで、それら二つのいずれについても L^ ノルムより強い制御を与える。ローレンツノルムは、しかし L^ ノルムのように函数の値の任意の再配分の下で不変である。.

12 関係: 可測関数対称減少再配分ノルムハーディ=リトルウッドの不等式ルベーグ測度カヴァリエリの原理シュプリンガー・サイエンス・アンド・ビジネス・メディア解析学Lp空間測度論準ノルム数学

可測関数

数学の、特に測度論の分野における可測関数(かそくかんすう、)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像が可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。 この定義は単純なようにも見えるが、σ-代数も併せて考えているということに特別な注意が払われなければならない。特に、関数 f: R → R がルベーグ可測であるといったとき、これは実際には f\colon (\mathbb, \mathcal) \to (\mathbb, \mathcal) が可測関数であることを意味する。すなわち、その定義域と値域は、同じ台集合上で異なる σ-代数を持つものを表している(ここで \mathcal はルベーグ可測集合全体の成す σ-代数であり、\mathcal は R 上のボレル集合族である)。結果として、ルベーグ可測関数の合成は必ずしもルベーグ可測とはならない。 慣例では、特に断りの無い限り、位相空間にはその開部分集合全体により生成されるボレル代数が与えられるものと仮定される。最もよくある場合だと、この空間として実数全体あるいは複素数全体からなる空間をとる。例えば、実数値可測関数とは、各ボレル集合の原像が可測となるような関数を言う。複素数値可測関数も同様に定義される。実用においては、ボレル集合族に関する実数値可測関数のみを指して可測関数という語を使用するものもある。関数の値が R や C の代わりに無限次元ベクトル空間に取られるのであれば、弱可測性やボホナー可測性などの、可測性に関する他の定義が用いられることが普通である。 確率論の分野において、σ-代数はしばしば、利用可能な情報すべてからなる集合を表し、ある関数(この文脈では確率変数)が可測であるとは、それが利用可能な情報に基づいて知ることの出来る結果(outcome)を表すことを意味する。対照的に、少なくとも解析学の分野においては、ルベーグ可測でない関数は一般に病的であると見なされる。.

新しい!!: ローレンツ空間と可測関数 · 続きを見る »

対称減少再配分

数学においてある函数の対称減少再配分(たいしょうげんしょうさいはいぶん、)とは、等位集合の大きさがその函数のものと等しいような、対称かつ減少な函数のことをいう。.

新しい!!: ローレンツ空間と対称減少再配分 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: ローレンツ空間とノルム · 続きを見る »

ハーディ=リトルウッドの不等式

数学の解析学の分野において、ゴッドフレイ・ハロルド・ハーディとジョン・エデンサー・リトルウッドの名にちなむハーディ=リトルウッドの不等式(ハーディ=リトルウッドのふとうしき、)とは、f と g が n 次元ユークリッド空間 Rn 上で定義される非負の可測 実函数で、無限大で消失するものであるときに成り立つ次の不等式のことをいう。 ここで f* と g* はそれぞれ f(x) と g(x) の対称減少再配分である 。.

新しい!!: ローレンツ空間とハーディ=リトルウッドの不等式 · 続きを見る »

ルベーグ測度

数学におけるルベーグ測度(ルベーグそくど、Lebesgue measure)は、ユークリッド空間上の長さ、面積、体積の概念を拡張したものである。名称はフランスの数学者アンリ・ルベーグにちなむ。体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。実解析、特にルベーグ積分で用いられる。体積と同様ルベーグ測度は値として をとりうる。解析学で普通に考えられるような集合に対してはルベーグ測度が与えられるものと考えてよいが、選択公理によって の部分集合でルベーグ測度を与えることができない(無理に与えると加法性が成り立たない)ものが存在することを証明できる。ルベーグ測度が与えられる集合はルベーグ可測であるという。以下の説明ではルベーグ可測な集合 の測度を で表す。.

新しい!!: ローレンツ空間とルベーグ測度 · 続きを見る »

カヴァリエリの原理

ヴァリエリの原理(カヴァリエリのげんり、Cavalieri's principle)は、面積や体積に関する一般的な法則のひとつである。カヴァリエリの定理、不可分の方法 (method of indivisibles) ともいう。例えば体積についてのカヴァリエリの原理とは、大まかには「切り口の面積が常に等しい2つの立体の体積は等しい」という主張である。カヴァリエリは17世紀のイタリアの数学者。.

新しい!!: ローレンツ空間とカヴァリエリの原理 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: ローレンツ空間とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

解析学

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である 日本数学会編、『岩波数学辞典 第4版』、岩波書店、2007年、項目「解析学」より。ISBN978-4-00-080309-0 C3541 。代数学、幾何学と合わせ数学の三大分野をなす。 数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。 例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。 解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。 解析学は微積分をもとに、微分方程式や関数論など多岐に渡って発達しており、現代では確率論をも含む。 現代日本においては解析学の基本的分野は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学等で教えられている。.

新しい!!: ローレンツ空間と解析学 · 続きを見る »

Lp空間

数学の分野における Lp 空間(エルピーくうかん、Lp space)とは、有限次元ベクトル空間に対する p-ノルムの自然な一般化を用いることで定義される関数空間である。アンリ・ルベーグの名にちなんでルベーグ空間としばしば呼ばれる が、 によると初めて導入されたのは とされている。Lp 空間は関数解析学におけるバナッハ空間や、線型位相空間の重要なクラスを形成する。物理学や統計学、金融、工学など様々な分野で応用されている。.

新しい!!: ローレンツ空間とLp空間 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: ローレンツ空間と測度論 · 続きを見る »

準ノルム

数学の線型代数学や函数解析および関連する分野における準ノルム(じゅんノルム、)とは、ノルムと類する概念であり、三角不等式を除いたノルムの公理を満たす。また三角不等式の成立は、ある K > 1 に対する不等式 の成立に置き換えられる。半ノルムや擬ノルムとは異なる概念である(それらでは正定値性のみが満たされない)。.

新しい!!: ローレンツ空間と準ノルム · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: ローレンツ空間と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »