ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ペアノの公理

索引 ペアノの公理

ペアノの公理(ペアノのこうり、Peano axioms) とは、自然数全体を公理化したものである。1891年に、ジュゼッペ・ペアノによって定義された。.

31 関係: 単射一階述語論理二階述語論理ラムダ計算ラテン語レーヴェンハイム–スコーレムの定理ロビンソン算術プレスバーガー算術ダフィット・ヒルベルトジュゼッペ・ペアノジョン・フォン・ノイマン写像全単射公理公理的集合論共立出版共通部分 (数学)元 (数学)空集合算術算術の超準モデル順序数部分集合自然数集合集合論推論規則河野伊三郎数学的帰納法1889年1891年

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: ペアノの公理と単射 · 続きを見る »

一階述語論理

一階述語論理(いっかいじゅつごろんり、first-order predicate logic)とは、個体の量化のみを許す述語論理 (predicate logic) である。述語論理とは、数理論理学における論理の数学的モデルの一つであり、命題論理を拡張したものである。個体の量化に加えて述語や関数の量化を許す述語論理を二階述語論理(にかいじゅつごろんり、second-order predicate logic)と呼ぶ。それにさらなる一般化を加えた述語論理を高階述語論理(こうかいじゅつごろんり、higher-order predicate logic)という。本項では主に一階述語論理について解説する。二階述語論理や高階述語論理についての詳細は「二階述語論理」「高階述語論理」を参照。.

新しい!!: ペアノの公理と一階述語論理 · 続きを見る »

二階述語論理

二階述語論理(にかいじゅつごろんり、second-order predicate logic)あるいは単に二階論理(にかいろんり、second-order logic)は、一階述語論理を拡張した論理体系であり、一階述語論理自体も命題論理を拡張したものである。二階述語論理もさらに高階述語論理や型理論に拡張される。 一階述語論理と同様に議論領域(ドメイン)の考え方を使う。ドメインとは、量化可能な個々の元の集合である。一階述語論理では、そのドメインの個々の元が変項の値となり、量化される。例えば、一階の論理式 ∀x (x ≠ x + 1) では、変項 x は任意の個体を表す。二階述語論理は個体の集合を変項の値とし、量化することができる。例えば、二階の論理式 ∀S ∀x (x ∈ S ∨ x ∉ S) は、個体の全ての集合 S と全ての個体 x について、x が S に属するか、あるいは属さないかのどちらかであるということを主張している。最も一般化された二階述語論理は関数の量化をする変項も含んでいる(詳しくは後述)。.

新しい!!: ペアノの公理と二階述語論理 · 続きを見る »

ラムダ計算

ラムダ計算(ラムダけいさん、lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(evaluation)と適用(application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論など、計算機科学のいろいろなところで使われており、特にLISP、ML、Haskellといった関数型プログラミング言語の理論的基盤として、その誕生に大きな役割を果たした。 ラムダ計算は1つの変換規則(変数置換)と1つの関数定義規則のみを持つ、最小の(ユニバーサルな)プログラミング言語であるということもできる。ここでいう「ユニバーサルな」とは、全ての計算可能な関数が表現でき正しく評価されるという意味である。これは、ラムダ計算がチューリングマシンと等価な数理モデルであることを意味している。チューリングマシンがハードウェア的なモデル化であるのに対し、ラムダ計算はよりソフトウェア的なアプローチをとっている。 この記事ではチャーチが提唱した元来のいわゆる「型無しラムダ計算」について述べている。その後これを元にして「型付きラムダ計算」という体系も提唱されている。.

新しい!!: ペアノの公理とラムダ計算 · 続きを見る »

ラテン語

ラテン語(ラテンご、lingua latina リングア・ラティーナ)は、インド・ヨーロッパ語族のイタリック語派の言語の一つ。ラテン・ファリスク語群。漢字表記は拉丁語・羅甸語で、拉語・羅語と略される。.

新しい!!: ペアノの公理とラテン語 · 続きを見る »

レーヴェンハイム–スコーレムの定理

レーヴェンハイム–スコーレムの定理(Löwenheim–Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。.

新しい!!: ペアノの公理とレーヴェンハイム–スコーレムの定理 · 続きを見る »

ロビンソン算術

数理論理学においてロビンソン算術(Robinson arithmetic)あるいはQとはペアノ算術(PA)の有限部分理論であり、において最初に導入された。Qは本質的にはPAから帰納法の公理図式を取り除いたものである。それゆえQはPAよりも弱いが同一の言語を持つ不完全な理論である。Qは重要かつ興味深い対象である。というのもQは本質的決定不能かつ有限公理化可能なPAの部分理論だからである。.

新しい!!: ペアノの公理とロビンソン算術 · 続きを見る »

プレスバーガー算術

プレスバーガー算術(Presburger arithmetic)とは加法を含む自然数に関する一階述語論理体系である。 モイジェシュ・プレスバーガーにより1929年に導入された。 プレスバーガー算術のシグネチャには加法と等号のみが含まれ乗法は省かれる。 公理には数学的帰納法の公理型を含む。 プレスバーガー算術は加法と乗法両方含むペアノ算術より弱い体系である。ペアノ算術とは異なりプレスバーガー算術は決定可能である。 これはプレスバーガー算術の言語で書かれた任意の閉論理式がプレスバーガー算術の公理で証明可能かどうかを判定するアルゴリズムが存在することを意味する。 この決定問題の計算複雑性は漸近的に二重指数関数であることがで示されている。.

新しい!!: ペアノの公理とプレスバーガー算術 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ペアノの公理とダフィット・ヒルベルト · 続きを見る »

ジュゼッペ・ペアノ

ュゼッペ・ペアノ(ペアーノ、Giuseppe Peano, 1858年8月27日、ピエモンテ州クーネオ – 1932年4月20日、トリノ)はイタリアの数学者。トリノ大学教授。自然数の公理系 (ペアノの公理)、ペアノ曲線の考案者として知られる。 人工言語の一つである無活用ラテン語を提唱したことでも知られる。.

新しい!!: ペアノの公理とジュゼッペ・ペアノ · 続きを見る »

ジョン・フォン・ノイマン

ョン・フォン・ノイマン(ハンガリー名:Neumann János(ナイマン・ヤーノシュ、)、ドイツ名:ヨハネス・ルートヴィヒ・フォン・ノイマン、John von Neumann, Margittai Neumann János Lajos, Johannes Ludwig von Neumann, 1903年12月28日 - 1957年2月8日)はハンガリー出身のアメリカ合衆国の数学者。20世紀科学史における最重要人物の一人。数学・物理学・工学・計算機科学・経済学・気象学・心理学・政治学に影響を与えた。第二次世界大戦中の原子爆弾開発や、その後の核政策への関与でも知られる。.

新しい!!: ペアノの公理とジョン・フォン・ノイマン · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: ペアノの公理と写像 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: ペアノの公理と全単射 · 続きを見る »

公理

公理(こうり、axiom)とは、その他の命題を導きだすための前提として導入される最も基本的な仮定のことである。一つの形式体系における議論の前提として置かれる一連の公理の集まりを (axiomatic system) という 。公理を前提として演繹手続きによって導きだされる命題は定理とよばれる。多くの文脈で「公理」と同じ概念をさすものとして仮定や前提という言葉も並列して用いられている。 公理とは他の結果を導きだすための議論の前提となるべき論理的に定式化された(形式的な)言明であるにすぎず、真実であることが明らかな自明の理が採用されるとは限らない。知の体系の公理化は、いくつかの基本的でよく知られた事柄からその体系の主張が導きだせることを示すためになされることが多い。 なお、ユークリッド原論などの古典的な数学観では、最も自明(絶対的)な前提を公理、それに準じて要請される前提を公準 (postulate) として区別していた。.

新しい!!: ペアノの公理と公理 · 続きを見る »

公理的集合論

公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。.

新しい!!: ペアノの公理と公理的集合論 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: ペアノの公理と共立出版 · 続きを見る »

共通部分 (数学)

数学において、集合族の共通部分(きょうつうぶぶん、intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、)、積集合(せきしゅうごう)、積(せき)、などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。.

新しい!!: ペアノの公理と共通部分 (数学) · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: ペアノの公理と元 (数学) · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: ペアノの公理と空集合 · 続きを見る »

算術

算術 (さんじゅつ、arithmetic) は、数の概念や数の演算を扱い、その性質や計算規則、あるいは計算法などの論理的手続きを明らかにしようとする学問分野である。.

新しい!!: ペアノの公理と算術 · 続きを見る »

算術の超準モデル

算術の超準モデル (non-standard model of arithmetic) とは、(一階)ペアノ算術のモデルのうち、通常の自然数ではない要素(超準数)を含むようなモデルのことである。それに対し、通常の自然数 \mathbb は算術の標準モデルと呼ばれる。ペアノ算術の任意のモデルは線形順序で並んでおり、\mathbb と同型な切片を持つ。超準モデルは、その切片の外に元を持つようなモデルであると言える。.

新しい!!: ペアノの公理と算術の超準モデル · 続きを見る »

順序数

数学でいう順序数(じゅんじょすう、ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数を拡張させた概念である。.

新しい!!: ペアノの公理と順序数 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: ペアノの公理と部分集合 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: ペアノの公理と自然数 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: ペアノの公理と集合 · 続きを見る »

集合論

集合論(しゅうごうろん、set theory, théorie des ensembles, Mengenlehre)は、集合とよばれる数学的対象をあつかう数学理論である。 通常、「集合」はいろいろな数学的対象の集まりを表していると見なされる。これは日常的な意味でのものの集まりやその要素、特定のものが入っているかいないか、という概念を包摂している。現代数学の定式化においては集合論がさまざまな数学的対象を描写する言葉をあたえている。(論理や述語論理とともに)集合論は数学の公理的な基礎付けをあたえ、数学的な対象を形式的に(無定義語の)「集合」と「帰属関係」によって構成することが可能になる。また、集合論の公理として何を仮定するとどんな体系が得られるか、といった集合それ自体の研究も活発に行われている。 集合論における基本的な操作には、あたえられた集合のべき集合や直積集合をとる、などがある。また二つの集合の元同士の関係(二項関係)を通じて定義される順序関係や写像などの概念が集合の分類に重要な役割を果たす。集合論では二つの集合はそれぞれの集合の元の間に全単射が存在するとき濃度が等しいという。そこで集合を濃度の等しさによって類別した各々の同値類のことを濃度という。この定義では濃度は真のクラスになってしまうので、濃度そのものを集合論的な対象として取り扱い難い。選択公理を仮定すると任意の集合は整列可能であることが導かれる。整列集合の順序型を順序同型で類別した各々の同値類と定義してしまうと、それは真のクラスとなってしまう。幸いなことに任意の整列集合は順序数と呼ばれる特別な集合(を帰属関係で順序付けしたもの)と順序同型となる。そのためそれら順序数を整列集合の順序型と定義することができる。また順序数全体 \mathrm(これは真のクラスになる)もまた整列順序付けられている。以上のもとで、集合の濃度を と定義することができる。すなわち濃度というのを特別な順序数として定義するわけである。このようにすることで濃度の定義から真のクラスを追放することができる。ただし選択公理を仮定することなく濃度を定義し取り扱うことはできる。基本的なアイデアは濃度で類別した各々同値類から累積階層の意味で階数が最小なものだけを分出するというものである。詳細はを参照。.

新しい!!: ペアノの公理と集合論 · 続きを見る »

推論規則

推論規則(すいろんきそく、rule of inference, inference rule, transformation rule)とは、論理式から他の論理式を導く推論の規則である。 記号、公理、代入規則、推論規則によって理論を形式化したものを公理系という。 公理は記号だけで記述されるが、推論規則や代入規則はこれらの記号について述べているメタ言語で記述される。 恒真式 (トートロジー)から推論規則を導くと妥当性のある推論になる。.

新しい!!: ペアノの公理と推論規則 · 続きを見る »

河野伊三郎

河野 伊三郎(こうの いさぶろう、1905年 - 1994年)は、日本の数学者。.

新しい!!: ペアノの公理と河野伊三郎 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: ペアノの公理と数学的帰納法 · 続きを見る »

1889年

記載なし。

新しい!!: ペアノの公理と1889年 · 続きを見る »

1891年

記載なし。

新しい!!: ペアノの公理と1891年 · 続きを見る »

ここにリダイレクトされます:

ペアーノの定義ペアーノの公理ペアーノ定義ペアーノ公理ペアノの定義ペアノ定義ペアノ公理ペアノ算術ペアノ計算

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »