ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

フィッティングの補題

索引 フィッティングの補題

数学において、の補題 (Fitting lemma) は、M が直既約加群で長さ有限であれば M のすべての自己準同型は全単射であるかさもなくば冪零であるという代数学の定理である。この定理から M の自己準同型環は局所環であることが従う。.

12 関係: 加群の長さ局所環代数学クルル・シュミットの定理冪零元全単射環上の加群直既約加群補題自己準同型自己準同型環数学

加群の長さ

抽象代数学において、加群の長さ (length) は加群の「大きさ」の尺度である。それは部分加群の最長の鎖の長さと定義され、ベクトル空間の次元の概念の一般化である。有限の長さをもつ加群は有限次元ベクトル空間と多くの重要な性質を共有する。 環と加群の理論において「大きさを測る」ために使われる他の概念は深さと高さである。これらは両方とも定義するのが幾分デリケートである。これらはまた有用な次元のさまざまなアイデアである。長さ有限の可換環は形式的な代数幾何学の関手的扱いにおいて本質的な役割を果たす。.

新しい!!: フィッティングの補題と加群の長さ · 続きを見る »

局所環

抽象代数学における局所環(きょくしょかん、local ring)は、1938年にヴォルフガンク・クルルによって導入された概念で、比較的簡単な構造を持つ環であり、代数多様体や可微分多様体上で定義される関数の、あるいは代数体を座や素点上の関数として見るときの「局所的な振る舞い」を記述すると考えられるものである。局所環およびその上の加群について研究する可換環論の一分野を局所環論と呼ぶ。.

新しい!!: フィッティングの補題と局所環 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: フィッティングの補題と代数学 · 続きを見る »

クルル・シュミットの定理

数学において、クルル・シュミットの定理(Krull-Schmidt theorem)とは、加群や群の直既約分解の一意性に関する定理である。「クルル・シュミットの定理」の他にも「クルル・シュミット・東屋の定理」、「クルル・レマク・シュミットの定理」、「ウェダーバーン・レマク・クルル・シュミットの定理」とも呼ばれる。これらの数学者の貢献に関する歴史についてはとを参照のこと。.

新しい!!: フィッティングの補題とクルル・シュミットの定理 · 続きを見る »

冪零元

数学において、環 R の元 x はある正の整数 n が存在して xn.

新しい!!: フィッティングの補題と冪零元 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: フィッティングの補題と全単射 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: フィッティングの補題と環上の加群 · 続きを見る »

直既約加群

抽象代数学において、加群が直既約(ちょくきやく、indecomposable)であるとは、その加群が0でなく、2つの0でない部分加群の直和として書けないということである。直既約でない加群は直可約(ちょくかやく、decomposable)と言う。 直既約は単純(既約)よりも弱い概念である。加群 M が単純であるとは「真の部分加群 の形の加群( を含む、このとき になる)は直既約である。すべての有限生成 -加群はこれらの直和である。これが単純であることは (または )であることと同値であることに注意せよ。例えば、位数4の巡回群 は直既約であるが単純でない。この群は位数 の部分群 しか非自明な部分群を持たないが、これは直和因子でない。 整数環 上の加群はアーベル群である。有限生成アーベル群が直既約であることとそれが か素数 と正整数 について.

新しい!!: フィッティングの補題と直既約加群 · 続きを見る »

補題

数学において、「補助定理」(helping theorem) あるいは補題 (lemma))-->とは、それ自身興味あるステートメントとしてよりはむしろ、より大きな結果のための一歩として使われる、証明された命題である。.

新しい!!: フィッティングの補題と補題 · 続きを見る »

自己準同型

数学における自己準同型(じこじゅんどうけい、)とは、ある数学的対象からそれ自身への射(あるいは準同型)のことを言う。例えば、あるベクトル空間 V の自己準同型は、線型写像 ƒ: V → V であり、ある群 G の自己準同型は、群準同型 ƒ: G → G である。一般に、任意の圏に対して自己準同型を議論することが可能である。集合の圏において、自己準同型はある集合 S からそれ自身への函数である。 任意の圏において、X の任意の二つの自己準同型写像の合成は再び X の自己準同型である。X のすべての自己準同型の集合はモノイドを構成し、それは End(X) と表記される(あるいは、圏 C を強調するために EndC(X) と表記される)。.

新しい!!: フィッティングの補題と自己準同型 · 続きを見る »

自己準同型環

抽象代数学において、アーベル群 X の自己準同型環(endomorphism ring) は、X からそれ自身への準同型写像( 上の自己準同型)すべてからなる集合である。加法は(後述)で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(endomorphism algebra; 自己準同型代数)とも呼ばれる。.

新しい!!: フィッティングの補題と自己準同型環 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: フィッティングの補題と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »