ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

フィッツフュー-南雲モデル

索引 フィッツフュー-南雲モデル

フィッツフュー-南雲モデル(FitzHugh-Nagumo model)は、神経細胞などの電気的興奮性細胞の活動電位を表現したモデルであり、リチャード・フィッツフューと南雲仁一の名にちなんでいる。このモデルは、神経細胞の活動電位発火(スパイク)における活性化と不活性化をモデル化したホジキン-ハクスリーモデル の微分方程式を簡略化したものである。フィッツフュー-南雲モデルは以下のように僅か2つの微分方程式で表される。 \dot.

6 関係: ファン・デル・ポール振動子アトラクター状態空間 (制御理論)神経細胞計算論的神経科学活動電位

ファン・デル・ポール振動子

ファン・デル・ポール振動子とは、非線形の減衰を受けた非保存系の振動子である。支配方程式は、ファン・デル・ポール方程式と呼ばれる次の式である。 x は座標で、時間 t の関数となっている。μは非線形の減衰の強さを表すパラメーターである。 リエナールの定理から、リミットサイクルの存在を示すことができる。.

新しい!!: フィッツフュー-南雲モデルとファン・デル・ポール振動子 · 続きを見る »

アトラクター

トレンジアトラクターを可視化した例 アトラクター(英: attractor)は、ある力学系がそこに向かって時間発展をする集合のことである。 その力学系において、アトラクターに十分近い点から運動するとき、そのアトラクターに十分近いままであり続ける。アトラクターの形状は点や曲線、多様体、さらにフラクタル構造を持った複雑な集合であるストレンジアトラクターなどをとりうる。 カオスな力学系に対してアトラクターを描写することは、現在においてもカオス理論における一つの研究課題である。 アトラクターに含まれる軌道は、そのアトラクターの内部にとどまり続けること以外に制限はなく、周期的であったり、カオス的であったりする。.

新しい!!: フィッツフュー-南雲モデルとアトラクター · 続きを見る »

状態空間 (制御理論)

態空間(じょうたいくうかん、State Space)あるいは状態空間表現(じょうたいくうかんひょうげん、State Space Representation)は、制御工学において、物理的システムを入力と出力と状態変数を使った一階連立微分方程式で表した数学的モデルである。入力、出力、状態は複数存在することが多いため、これらの変数はベクトルとして表され、行列形式で微分代数方程式を表す(力学系が線形で時不変の場合)。状態空間表現は時間領域の手法であり、これを使うと複数の入力と出力を持つシステムをコンパクトにモデル化でき、解析が容易になる。周波数領域では、p 個の入力と q 個の出力があるとき、システム全体を現すには q \times p 個のラプラス変換を書かなければならない。周波数領域の手法とは異なり、状態空間表現では、線形性と初期値がゼロという制限は存在しない。「状態空間」は、その次元軸が個々の状態変数に対応することから名づけられている。システムの状態はこの空間内のベクトルとして表現される。.

新しい!!: フィッツフュー-南雲モデルと状態空間 (制御理論) · 続きを見る »

神経細胞

経細胞(しんけいさいぼう、ニューロン、neuron)は、神経系を構成する細胞で、その機能は情報処理と情報伝達に特化しており、動物に特有である。なお、日本においては「神経細胞」という言葉でニューロン(neuron)ではなく神経細胞体(soma)を指す慣習があるが、本稿では「神経細胞」の語を、一つの細胞の全体を指して「ニューロン」と同義的に用いる。.

新しい!!: フィッツフュー-南雲モデルと神経細胞 · 続きを見る »

計算論的神経科学

計算論的神経科学(けいさんろんてきしんけいかがく、英語:computational neuroscience)は、脳を情報処理機械に見立ててその機能を調べるという脳研究の一分野である。先駆的業績はマッカロクとピッツの形式ニューロンモデル、ホジキンとハクスレー(ノーベル賞受賞)などがあるが、当時は計算論的神経科学という言い方はなかった。他の先駆者にマイケル・アービブや甘利俊一などがいる。特に視覚の計算理論で知られるデビッド・マーの功績で現代的計算論的神経科学が確立した。 デビッド・マーは彼の著書"Vision"の中で、脳を理解するためには異なる3つのレベルでの理解が必要であると主張し、情報処理システムとしての脳を研究するための指針を与えた。3つのうち最上位のレベルは抽象的な計算理論である。そこでは、計算の目的は何か、何故それが適切なのか、そしてその実行可能な方略の論理は何なのかということが問われる。また、最下層のレベルはハードウェアのレベルであり、明らかとなった計算問題がどのような物理的な機構により解かれているかというものだ。具体的には神経細胞や神経回路などが対象となる。さらに、この上位の計算理論と下位のハードウェアのレベルをつなぐ概念としてアルゴリズムと表現というレベルがある。これは、脳に入出力される情報の表現および入力から出力に変換するのに用いられるアルゴリズムについてのレベルで、上位の計算理論がハードウェアの上でどのように実現されるのかを理解しようとする。マーによる以上のようなレベルを意識して、上位のレベルから研究を行うアプローチを計算論的神経科学という。.

新しい!!: フィッツフュー-南雲モデルと計算論的神経科学 · 続きを見る »

活動電位

活動電位(かつどうでんい、)は、なんらかの刺激に応じて細胞膜に生じる一過性の膜電位の変化である。活動電位は、主としてナトリウムイオン、カリウムイオンが、細胞内外の濃度差に従い、イオンチャネルを通じて受動的拡散を起こすことにより起きるものである。 活動電位は動物の本質的な必要条件であり、素早く組織間・内で情報を伝えることができる。また、動物のみならず、植物にも存在する。活動電位は様々な種類の細胞から生み出されるが、最も広範には神経系に於いて、神経細胞同士や、神経細胞から筋肉や腺などの他の体組織に情報を伝達するために使われる。 活動電位は全ての細胞で同じわけではなく、同じ種類の細胞でも細胞固体によって性質が異なることがある。例えば、筋肉は神経に次いで活動電位を発する組織として有名だが、中でも心筋活動電位は大抵の細胞間で大きく異なる。この項では神経細胞の軸索の典型的な活動電位について扱う。 '''A.''' 理想的な活動電位の概略図。細胞膜上の一点を通過する際の活動電位の種々相を示す。 '''B.''' 電気ノイズや記録のための電気生理学技術のばらつきにより、実際の活動電位記録は概略図から歪む。.

新しい!!: フィッツフュー-南雲モデルと活動電位 · 続きを見る »

ここにリダイレクトされます:

フィッツヒュー-南雲モデルフィッツヒュー-南雲方程式フィッツフュー-南雲方程式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »