ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

カルノー図

索引 カルノー図

ルノー図の例 カルノー図(カルノーず、Karnaugh map)は論理回路などにおいて論理式を簡単化するための表であり、その方法をカルノー図法という。よく似た概念にベイチ 図と呼ばれる図があり、変数と数字の書き方のみが異なる。.

14 関係: ハミング距離モーリス・カルノーブール代数ブール関数ベル研究所ベン図クワイン・マクラスキー法グレイコード回路素子真理値表選言標準形論理回路1950年代

ハミング距離

4ビット文字列のハミング距離を図示したもの。頂点に特定のビットの組合せが対応していて、頂点間の辺の数がハミング距離に対応する 情報理論において、ハミング距離(ハミングきょり、Hamming distance)とは、等しい文字数を持つ二つの文字列の中で、対応する位置にある異なった文字の個数である。別の言い方をすれば、ハミング距離は、ある文字列を別の文字列に変形する際に必要な置換回数を計測したものである。この用語は、リチャード・ハミング (Richard Wesley Hamming) にちなんで命名されたもので、鼻歌 (humming) ではない。 ハミング距離は、遠距離通信における固定長バイナリー文字列の中で弾かれたビット数や、エラーの概算を数えるのに用いられるために、信号距離とも呼ばれる。文字数 n の1ビット文字列間のハミング距離は、それらの文字列間の排他的論理和のハミング重み(文字列内の 1 の個数)か、 n 次元超立方体の 2 頂点間のマンハッタン距離に相当する。 ハミング距離の例:.

新しい!!: カルノー図とハミング距離 · 続きを見る »

モーリス・カルノー

モーリス・カルノー(Maurice Karnaugh、、1924年10月4日 - )はアメリカ合衆国の物理学者、数学者。ブール代数で使われているカルノー図で知られる。.

新しい!!: カルノー図とモーリス・カルノー · 続きを見る »

ブール代数

ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。.

新しい!!: カルノー図とブール代数 · 続きを見る »

ブール関数

ブール関数(ブールかんすう、Boolean function)は、非負整数 k 個のブール領域 B.

新しい!!: カルノー図とブール関数 · 続きを見る »

ベル研究所

ベル研究所(ベルけんきゅうじょ、Bell Laboratories)はもともとBell System社の研究開発部門として設立された研究所であり、現在はノキアの子会社である。「ベル電話研究所」、略して「ベル研」とも。.

新しい!!: カルノー図とベル研究所 · 続きを見る »

ベン図

ベン図が描かれたステンドグラス ベン図(ベンず、もしくはヴェン図、Venn diagram)とは、複数の集合の関係や、集合の範囲を視覚的に図式化したものである。イギリスの数学者ジョン・ベン (John Venn) によって考え出された。ベンにゆかりの深いケンブリッジ大学のゴンヴィル・アンド・キーズ・カレッジには、ベン図を描いたステンドグラスがある。.

新しい!!: カルノー図とベン図 · 続きを見る »

クワイン・マクラスキー法

ワイン・マクラスキー法(—ほう; Quine–McCluskey algorithm/略:QM法)はブール関数を簡単化するための方法である。カルノー図と同様の目的で使われるが、コンピュータによる自動化に適しており、またブール関数が最簡形かどうか決定的に求めることができる。W・V・クワインが提案し、E・J・マクラスキーが発展させた方法なのでこの名がある。 クワイン・マクラスキー法は3段階からなる。.

新しい!!: カルノー図とクワイン・マクラスキー法 · 続きを見る »

グレイコード

レイコード(Gray code、交番二進符号(こうばんにしんふごう、英:Reflected Binary Codeなどとも)とは、数値の符号化法のひとつで、前後に隣接する符号間のハミング距離が必ず1であるという特性を持つ。ディジタル回路や、具体例としてはアブソリュート・ロータリー・エンコーダーのセンサー出力等に使われる。 Reflected Binary Codeという表現はベル研究所のフランク・グレイ(Frank Gray)による1947年の特許出願書にある。1953年に他の人物が提出した特許出願書ではグレイコードと呼ばれている、J.

新しい!!: カルノー図とグレイコード · 続きを見る »

回路

回路(かいろ)は、エネルギー・物質などが出て、再び元の場所に戻るまでの道筋のこと。.

新しい!!: カルノー図と回路 · 続きを見る »

素子

素子(そし).

新しい!!: カルノー図と素子 · 続きを見る »

真理値表

真理値表(しんりちひょう、Truth table)は、論理関数の、入力の全てのパターンとそれに対する結果の値を、表にしたものである。 例1:命題Pの否定「\lnot P」の場合、以下のような真理値表になる。 例2:2つの命題P,Qの論理和「P \lor Q」の場合、以下のような真理値表になる。 例3:2つの命題P,Qの論理積「P \land Q」の場合、以下のような真理値表になる。 なお、この表では「真」「偽」として表記してあるが、「T(.

新しい!!: カルノー図と真理値表 · 続きを見る »

選言標準形

選言標準形(せんげんひょうじゅんけい、Disjunctive normal form, DNF)は、数理論理学においてブール論理での論理式の標準化(正規化)の一種であり、連言節(AND)の選言(OR)の形式で論理式を表す。加法標準形、主加法標準形、積和標準形とも呼ぶ。正規形としては、自動定理証明で利用されている。.

新しい!!: カルノー図と選言標準形 · 続きを見る »

論理回路

論理回路(ろんりかいろ、logic circuit)は、論理演算を行う電気回路及び電子回路である。真理値の「真」と「偽」、あるいは二進法の「0」と「1」を、電圧の正負や高低、電流の方向や多少、位相の差異、パルスなどの時間の長短、などで表現し、論理素子などで論理演算を実装する。電圧の高低で表現する場合それぞれを「」「」等という。基本的な演算を実装する論理ゲートがあり、それらを組み合わせて複雑な動作をする回路を構成する。状態を持たない組み合わせ回路と状態を持つ順序回路に分けられる。論理演算の結果には、「真」、「偽」の他に「不定」がある。ラッチ回路のdon't care, フリップフロップ回路の禁止が相当する。 ここでの論理は離散(digital)であるためディジタル回路を用いる。論理演算を行うアナログ回路、「アナログ論理」を扱う回路(どちらも「アナログ論理回路」)もある。 多値論理回路も量子コンピュータで注目されている。 電気(電子)的でないもの(たとえば流体素子や光コンピューティングを参照)もある。 以下では離散なデジタル回路を扱う。.

新しい!!: カルノー図と論理回路 · 続きを見る »

1950年代

1950年代(せんきゅうひゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1950年から1959年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1950年代について記載する。.

新しい!!: カルノー図と1950年代 · 続きを見る »

ここにリダイレクトされます:

カルノー図法

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »