ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

超球面

索引 超球面

数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

66 関係: 単連結空間反転反転幾何学可縮空間双曲3次元多様体三次元球面平均幅幾何学的トポロジー低次元トポロジー位相多様体位相群ノルム代数マイヤー・ヴィートリス完全系列ポントリャーギン類ポテンシャル論ポアンカレ予想メビウス変換モノイド圏ラプラス作用素レンズ空間レトラクト (位相幾何学)ビアンキ分類フビニ・スタディ計量フィールズ賞ド・ラームコホモロジード・ジッター空間ホモトピーホモトピー群ホップの定理アインシュタイン多様体オイラー類ゲーゲンバウアー多項式スマッシュ積ステレオ投影スティーフェル・ホイットニー類ソボレフ不等式写像度図形の一覧球対称函数球体球面球面調和関数空間充填結び目 (数学)点付き空間無限直交群鏡像被覆空間...調和関数超球の体積超曲面錐 (位相幾何学)連続体 (位相空間論)N=4 超対称ヤン・ミルズ理論S10S4S5S7S8接束断面曲率斜交群3次元4次元 インデックスを展開 (16 もっと) »

単連結空間

連結であるが、穴のまわりを1周するループを考えればわかるように単連結ではない。穴を全てふさげば単連結となる。 位相幾何学における単連結空間(たんれんけつくうかん、simply connected space)とは、任意のループを連続的に1点に収縮できるような弧状連結空間のことである。.

新しい!!: 超球面と単連結空間 · 続きを見る »

反転

反転(はんてん)とは何らかのものを逆にすること。数学、化学の専門用語としてはそれぞれ以下の意味を持つ。.

新しい!!: 超球面と反転 · 続きを見る »

反転幾何学

初等幾何学における反転幾何学(はんてんきかがく、inversive geometry)は、平面幾何学において反転 (inversion) と呼ばれる種類の変換を一般化したものに関して保たれる図形の性質について研究する。 平面上の反転変換は、角を保ち(等角性)、一般化された円を一般化された円に写す(「円円対応」)ような写像になっている。ここで「一般化された円」というのは、円または(無限遠点を中心とする半径無限大の円と見做される)直線のいずれかであることを意味する。初等幾何学における難しい問題が、反転を施すと扱いやすくなるというようなことも少なくない。 このような平面上の反転の概念を、より高次元の場合に一般化することができる。.

新しい!!: 超球面と反転幾何学 · 続きを見る »

可縮空間

数学において、位相空間 X は次のようなとき可縮 (contractible) である。X 上の恒等写像が、すなわち、ある定値写像にホモトープである。直感的には、可縮空間は連続的に一点に縮められるような空間である。 可縮空間はちょうど点のホモトピー型の空間である。可縮空間のすべてのホモトピー群は自明であることが従う。それゆえ非自明なホモトピー群をもつ任意の空間は可縮ではありえない。同様に、特異ホモロジーはホモトピー不変であるから、可縮空間のはすべて自明である。 位相空間 X に対して以下は全て同値である(ここで Y は任意の位相空間である).

新しい!!: 超球面と可縮空間 · 続きを見る »

双曲3次元多様体

数学において双曲3次元多様体(そうきょく3じげんたようたい、)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。.

新しい!!: 超球面と双曲3次元多様体 · 続きを見る »

三次元球面

数学における三次元(超)球面(さんじげんきゅうめん、3-sphere; 3-球面)あるいはグローム (glome) は、通常の球面の高次元版である超球面の特別の場合である。四次元ユークリッド空間内の三次元球面は、固定された一点を「中心」として等距離にある点全体の成す点集合として定義することができる。通常の球面(つまり、二次元球面)が三次元の立体である球体の境界を成すのと同様、三次元球面は四次元の立体である四次元球体の境界となる三次元の幾何学的対象である。三次元球面は、三次元多様体の一つの例を与える。.

新しい!!: 超球面と三次元球面 · 続きを見る »

平均幅

初等幾何学における平均幅(へいきんふく、mean width)は立体の「大きさ」に関する測度の一つである(立体の測度として利用可能なもののより詳細はを参照せよ)。 -次元の場合に、 上の与えられた方向 へ直交する -次元超平面を考える(ここに は m-次元球面(-次元球体の境界面)である)と、与えられた方向 への立体の「幅」("width") は、そのような超平面の対でその間に立体を完全に挟む(立体と超平面との交わりは境界上の点に限る)もののうち最も近い対の成す距離を言う。平均幅とは、この「幅」の の全ての方向 に亘ってとった算術平均を言う。 より厳密に、コンパクト立体 をその内部と境界からなる同値な点集合(この場合の点とは の元である)として定義し、立体 の(支持超平面と原点との距離)は h_B(n).

新しい!!: 超球面と平均幅 · 続きを見る »

幾何学的トポロジー

数学において、幾何学的トポロジー(geometric topology)は、多様体とそれらの間の写像、特に多様体から多様体への埋め込み(embedding)の研究をする。.

新しい!!: 超球面と幾何学的トポロジー · 続きを見る »

低次元トポロジー

数学における低次元位相幾何学(ていじげんいそうきかがく、low-dimensional topologyは、4次元、あるいはそれ以下の次元の多様体の研究をする位相幾何学の一分野である。扱われる主題は、および4次元多様体の構造論、結び目理論および組み紐群などがある。低次元トポロジーは幾何学的位相幾何学の一部と見なすことができる。.

新しい!!: 超球面と低次元トポロジー · 続きを見る »

位相多様体

位相幾何学という数学の分野において,位相多様体(いそうたようたい,topological manifold)とは,以下に定義される意味で実 次元空間に局所的に似ている(分離空間でもある)位相空間である.位相多様体は数学全般に応用を持つ位相空間の重要なクラスをなす. 「多様体」は位相多様体を意味することもあるし,より多くは,追加の構造を持った位相多様体を指す.例えば可微分多様体は可微分構造を備えた位相多様体である.任意の多様体は,単に追加の構造を忘れることによって得られる,台となる位相多様体を持つ.多様体の概念の概観はその記事に与えられている.この記事は純粋に多様体の位相的側面に焦点を当てる..

新しい!!: 超球面と位相多様体 · 続きを見る »

位相群

数学における位相群(いそうぐん、topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。.

新しい!!: 超球面と位相群 · 続きを見る »

ノルム代数

数学の特に函数解析学におけるノルム環(ノルムかん)またはノルム代数(ノルムだいすう、normed algebra; ノルム多元環、ノルム線型環) は適当な位相体 (とくに実数体 または複素数体 )上のノルム空間かつ多元環であって、そのノルムが を満たすものを言う。加えて、 が乗法単位元 を持つ(単位的多元環)ならば も仮定することがある。.

新しい!!: 超球面とノルム代数 · 続きを見る »

マイヤー・ヴィートリス完全系列

数学の特に代数的位相幾何学およびホモロジー論におけるマイヤー・ヴィートリス完全系列(マイヤーヴィートリスかんぜんけいれつ、Mayer–Vietoris sequence)は、位相空間が持つホモロジー群やコホモロジー群といった代数的位相不変量を計算するのに便利な道具の一つで、オーストリアの数学者ヴォルター・マイヤーとレオポルト・ヴィートリスによって示された。これは、位相空間を(コ)ホモロジーの計算がより容易にできるような部分空間の小片に分解するとき、得られる部分空間の(コ)ホモロジーの列ともとの空間のそれとの関係を述べたもので、それによりもとの空間のそれらを計算するという方法論を与える。マイヤー・ヴィートリス完全系列と呼ばれる完全系列は、全体空間の(コ)ホモロジー群、部分空間の(コ)ホモロジー群の直和、部分空間の交わりの(コ)ホモロジー群の三者から構成される自然な長完全列である。 マイヤー・ヴィートリス完全系列は、特異ホモロジー・特異コホモロジーを含む様々なホモロジー論およびコホモロジー論において成立する。一般に、アイレンバーグ-スティーンロッド公理系を満足する(コ)ホモロジー理論に対してマイヤー・ビートリスの完全系列が存在しており、それらに対する簡約版と相対版も考えることができる。大部分の位相空間は、その(コ)ホモロジーを定義から直接に計算することができないので、部分的な情報を得るためにマイヤー・ヴィートリス完全系列のような道具を利用する。位相幾何学に現れるような空間の多くは非常に簡単な小片の貼り合わせとして構成されるが、そういったものの中で、空間を被覆する二つの部分空間(およびそれらの交わり)がもとの空間より単純な(コ)ホモロジーを持つものを注意深く選べば、マイヤー・ヴィートリス完全系列によりもとの空間の(コ)ホモロジーが完全に演繹できるというのである。この観点で言えば、マイヤー・ヴィートリス完全系列は、基本群に対するの類似であり、実際一次元ホモロジーに対しては明確な関係がある。.

新しい!!: 超球面とマイヤー・ヴィートリス完全系列 · 続きを見る »

ポントリャーギン類

数学において、レフ・ポントリャーギン(Lev Pontryagin)の名前のついたポントリャーギン類(Pontryagin classes)は特性類のひとつで、4 の倍数の次数を持つコホモロジー群の中にある。ポントリャーギン類は、実ベクトルバンドルへ適用される。.

新しい!!: 超球面とポントリャーギン類 · 続きを見る »

ポテンシャル論

数学および数理物理学におけるポテンシャル論(ポテンシャルろん、)とは、調和函数に関する理論のことを言う。 19世紀の物理学において、自然界における基本的な力はラプラス方程式を満たすポテンシャルによってモデル化出来ることが知られ、そのときに「ポテンシャル論」という語が初めて用いられた。その後、例えば古典静電気学やニュートン重力などのより精確な理論の発展があったが、依然として「ポテンシャル論」という語は残されている。 ポテンシャル論とラプラス方程式の理論には、重複する点が少なからず存在する。それら二つの理論の明白な区別は、内容というよりも次に示す一つの明白な強調点に依っている:ポテンシャル論では「函数」の性質に焦点が置かれるが、ラプラス方程式の理論では「方程式」の性質に焦点が置かれる。例えば、調和函数の特異性に関する結果はポテンシャル論に属すると言えるが、その函数が境界値にどのように依存するかという点に関する結果はラプラス方程式の理論に属すると言えよう。もちろん、これは絶対的な区別ではなく、それら二つの理論における手法や結果には、実際には重複する点も多い。 近代のポテンシャル論はまた、確率論やマルコフ連鎖の理論とも密接に関連している。また連続の場合には、解析理論と密接に関連している。状態空間が有限の場合、その空間上の電気ネットワーク、推移確率に反比例する点の間の抵抗、ポテンシャルに比例する密度を導入することによって、そのような関連性が導かれる。そのような有限の場合であっても、ポテンシャル論におけるラプラシアンの analogue I-K はそれ自身の極大原理や一意性原理、バランス原理やその他の原理を備えるものである。.

新しい!!: 超球面とポテンシャル論 · 続きを見る »

ポアンカレ予想

予想の提唱者アンリ・ポアンカレ (3次元)ポアンカレ予想(ポアンカレよそう、Poincaré conjecture)とは、数学の位相幾何学(トポロジー)における定理の一つである。3次元球面の特徴づけを与えるものであり、定理の主張は というものである。2018年6月現在、7つのミレニアム懸賞問題のうち唯一解決されている問題である。.

新しい!!: 超球面とポアンカレ予想 · 続きを見る »

メビウス変換

幾何学における平面上のメビウス変換(メビウスへんかん、Möbius transformation)は、 の形で表される複素一変数 に関する有理函数である。ここで、係数 は を満足する複素定数である。 幾何学的にはメビウス変換は、複素数平面を実二次元球面へ立体射影したものの上で回転と平行移動により各点の位置と向きを変更したものを再度平面に立体射影することによって得られる。これらの変換は「角度」を保ち(「等角性」)、任意の「直線または円」を「直線または円」に写す(「円円対応」)。 メビウス変換は複素射影直線上の射影変換であり、その全体はメビウス群と呼ばれる射影一般線型群 を成す。メビウス群およびその部分群は数学および物理学においてざまざまな応用を持つ。 メビウス変換の名はアウグスト・フェルディナント・メビウスの業績に因むものだが、ほかにも射影変換や一次分数変換(あるいは単に一次変換)などと呼ばれることもある。.

新しい!!: 超球面とメビウス変換 · 続きを見る »

モノイド圏

数学におけるモノイド圏(モノイドけん、monoidal category; モノイド的圏、モノイダル圏)あるいはテンソル圏(テンソルけん、tensor category)は、(自然同型の違いを除いて結合的な と、 について(再び自然同型の違いを除いて)左および右単位元となる対象 を備えた圏 である。この圏における自然同型は、関連する全ての図式を可換にすることを保証した(一貫性条件、整合条件)に従わなければならない。したがって、モノイド圏は抽象代数におけるモノイドの圏論的な緩い類似物である。 ベクトル空間、アーベル群、-加群、-多元環などの間に定義される通常のテンソル積は、それぞれの概念に付随する圏にモノイド構造を与える。ゆえにモノイド圏をこれら、あるいは他の例の一般化として見ることもできる。 圏論において、モノイド圏はモノイド対象の概念とそれに付随する作用を定義する。また、豊穣圏を定義する際にも使われる。 モノイド圏は圏論以外の分野において多数の応用を持つ。直観的線型論理の multiplicative fragment のモデルを定義し、物性物理学においてトポロジカル秩序相の数学的な基盤を与え、は場の量子論やひも理論に応用をもつ。.

新しい!!: 超球面とモノイド圏 · 続きを見る »

ラプラス作用素

数学におけるラプラス作用素(ラプラスさようそ、Laplace operator)あるいはラプラシアン(Laplacian)は、ユークリッド空間上の函数の勾配の発散として与えられる微分作用素である。記号では,, あるいは で表されるのが普通である。函数 の点 におけるラプラシアン は(次元に依存する定数の違いを除いて)点 を中心とする球面を半径が増大するように動かすときの から得られる平均値になっている。直交座標系においては、ラプラシアンは各独立変数に関する函数の二階(非混合)偏導函数の和として与えられ、またほかに円筒座標系や球座標系などの座興系においても有用な表示を持つ。 ラプラス作用素の名称は、天体力学の研究に同作用素を最初に用いたフランス人数学者のピエール=シモン・ド・ラプラス (1749–1827) に因んでいる。同作用素は与えられた重力ポテンシャルに適用すると質量密度の定数倍を与える。現在ではラプラス方程式と呼ばれる方程式 の解は調和函数と呼ばれ、自由空間において可能な重力場を表現するものである。 微分方程式においてラプラス作用素は電気ポテンシャル、重力ポテンシャル、熱や流体の拡散方程式、波の伝搬、量子力学といった、多くの物理現象を記述するのに現れる。ラプラシアンは、函数の勾配フローの流束密度を表す。.

新しい!!: 超球面とラプラス作用素 · 続きを見る »

レンズ空間

数学におけるレンズ空間(レンズくうかん、lens space)とは、位相空間の一種である。しばしばの特定のクラスを指す言葉として用いられるが、一般にもっと高次元のレンズ空間も定義することができる。 3次元多様体の場合、レンズ空間というのは二つのソリッドトーラス(中身の詰まったトーラス)をその境界で貼り合せる事で得られる空間として特徴付けることができる。ただし、3次元球面 S3 や S2 × S1 は、そうやって得られる空間ではあるものの、自明な場合であるとして、レンズ空間としては扱わないことも多い。 3次元レンズ空間 L(p; q) は1908年に Tietze が導入した。3次元レンズ空間はそのホモロジーおよび基本群だけからは決定することができない3次元多様体の最もよく知られた例であり、そして同相型 (homeomorphism type) がそのホモトピー型から決まらない閉多様体の最も簡単な例である。J.W. Alexander は1919年にレンズ空間 L(5; 1) と L(5; 2) が、基本群とホモロジー群が同型であるにもかかわらず互いに同相ではないことを示した。他にも同じホモトピー型を持つ(従って基本群もホモロジー群も等しい)が同相型が異なるレンズ空間というものが存在する。これにより、レンズ空間の導入を以って(代数的位相幾何学から分かれて)幾何学的位相幾何学 (geometric topology) の起こりと考えられる。 3次元レンズ空間は基本群とライデマイスタートーションによって完全に分類される。.

新しい!!: 超球面とレンズ空間 · 続きを見る »

レトラクト (位相幾何学)

位相幾何学という数学の分野において,レトラクション (retraction) とは,位相空間から部分空間への,その部分空間の全ての点の位置を保つ連続写像である.変位レトラクション (deformation retraction) は空間を部分空間に「連続的に縮める」という概念を捉える写像である. 絶対近傍レトラクト (absolute neighborhood retract, ANR) は特にタイプの位相空間である.例えば,すべての位相多様体は ANR である.すべての ANR は非常に単純な位相空間,,のホモトピー型を持つ..

新しい!!: 超球面とレトラクト (位相幾何学) · 続きを見る »

ビアンキ分類

数学では、(Luigi Bianchi)の名前に因んだ、ビアンキ分類(Bianchi classification)は、リー代数の分類である。 3-次元実リー代数は、11個のクラスに分類され、その中の 9個は単独のグループで、残る 2つは同型類で繋がるという性質を持っている。(2つのグループは、無限個の族をなし、11個のグループの中に含まれることがあり、9個のグループをなることがある。).

新しい!!: 超球面とビアンキ分類 · 続きを見る »

フビニ・スタディ計量

フビニ・スタディ計量(Fubini–Study metric)は、射影ヒルベルト空間上のケーラー計量である。つまり、複素射影空間 CPn がエルミート形式を持つことを言う。この計量は、もともとは1904年と1905年に(Guido Fubini)と(Eduard Study)が記述したものであった。 ベクトル空間 Cn+1 のエルミート形式は、GL(n+1,C) の中のユニタリ部分群 U(n+1) を定義する。フビニ・スタディ計量は、U(n+1) 作用の下での不変性(スケーリングに対して)により差異を同一視すると決定し、等質性を持つ。フビニ・スタディ計量を持つ CPn は、(スケーリングを渡る)(symmetric space)である。特に、計量の正規化は、スケーリングの適用に依存する。リーマン幾何学においては、正規化された計量を使うことができるので、(2''n'' + 1) 次元球面上のフビニ・スタディ計量は、単純に標準の計量と関連付けられる。代数幾何学では、正規化を使い、CPn をホッジ多様体とすることができる。 n endowed with a Hermitian form.

新しい!!: 超球面とフビニ・スタディ計量 · 続きを見る »

フィールズ賞

フィールズ賞(フィールズしょう)は、若い数学者のすぐれた業績を顕彰し、その後の研究を励ますことを目的に、カナダ人数学者ジョン・チャールズ・フィールズ (John Charles Fields, 1863–1932) の提唱によって1936年に作られた賞のことである。.

新しい!!: 超球面とフィールズ賞 · 続きを見る »

ド・ラームコホモロジー

ド・ラームコホモロジー(de Rham cohomology)とは可微分多様体のひとつの不変量で、多様体上の微分形式を用いて定まるベクトル空間である。多様体の位相不変量である特異コホモロジーとド・ラームコホモロジーは同型になるというド・ラームの定理がある。.

新しい!!: 超球面とド・ラームコホモロジー · 続きを見る »

ド・ジッター空間

数学や物理学において、ド・ジッター空間 (de Sitter space) は、通常のユークリッド空間の球面の、ミンコフスキー空間あるいは時空における類似物である。n 次元ド・ジッター空間は dSn と書き、(標準のリーマン計量を持つ)''n'' 次元球面のローレンツ多様体での類似である。この空間は、最大の対称性を持ち、正の定曲率を持ち、3 以上の n に対し、単連結である。ド・ジッター空間は反ド・ジッター空間と同様に、ライデン大学の天文学の教授で、ライデン天文台の天文台長であったウィレム・ド・ジッター (Willem de Sitter) (1872–1934) の名前に因んでいる。ウィレム・ド・ジッターとアルベルト・アインシュタイン (Albert Einstein) は、1920年代にライデンで、宇宙の時空の構造について研究を共にした。 一般相対論のことばでは、ド・ジッター空間は最大対称性を持ち、(正の真空エネルギー密度と負の圧力に対応する)正(反発力)の宇宙定数 \Lambda を持つアインシュタイン場の方程式の(vacuum solution)である。( 3つの空間次元と 1つの時間次元)では、ド・ジッター空間は物理的な宇宙の天文学的なモデルである。ド・ジッター宇宙(de Sitter universe)を参照。 ド・ジッター空間はウィレム・ド・ジッターにより、また同時に、独立してトゥーリオ・レヴィ=チヴィタ (Tullio Levi-Civita) により発見された。 さらに最近は、ド・ジッター空間がミンコフスキー空間を使うというよりも、特殊相対論の設定として考えられるようになった。その理由は、(group contraction)は、ド・ジッター空間の等長変換群をポアンカレ群へと還元し、(semi-simple group)というよりも単純群の中へ、時空変換部分群やポアンカレ群のローレンツ変換部分群を統一することを可能とする。この特殊相対論の定式化を(de Sitter relativity)と呼ぶ。 n, is the Lorentzian manifold analog of an ''n''-sphere (with its canonical Riemannian metric); it is maximally symmetric, has constant positive curvature, and is simply connected for n at least 3.

新しい!!: 超球面とド・ジッター空間 · 続きを見る »

ホモトピー

数学におけるホモトピー (homotopy)とは、点や線や面などの幾何学的対象、あるいはそれらの間の連続写像が連続的に移りあうということを定式化した位相幾何学における概念のひとつである。位相幾何学では、2 つの対象 A と X との関係のうち、連続的な変形によって保たれるものを問題とすることが多い。これらの関係はふつう連続写像 A → X を通して定義され、ホモトピーの概念は連続的に変形する連続写像の族によって定式化される。ホモトピー的な種々の不変量は位相幾何学の研究における基本的な道具となる。 考察している幾何学的対象に「穴」が開いていれば、端を固定された曲線はそれを越えて連続的に変形することができない。したがって、ホモトピーによって「穴」の有無や、単純な構成要素に分解したときのそれらの組み合わせ的なつながり具合といった構造を調べることができる。ホモトピーが威力を発揮するのは、空間や写像といった幾何学的な対象に対し群や準同型などという代数的な対象を対応づけることであり、またそのような代数的な対象がしばしばもとの幾何学的な対象よりも単純化されているということにある。 このように、代数的な道具によって空間と写像の位相的性質を調べるという方法をとる幾何学は、代数的位相幾何学と呼ばれる。.

新しい!!: 超球面とホモトピー · 続きを見る »

ホモトピー群

数学において、ホモトピー群 (homotopy group) は代数トポロジーにおいて位相空間を分類するために使われる。1次の最も簡単なホモトピー群は基本群であり、空間のについての情報がわかる。直感的には、ホモトピー群は位相空間の基本的な形、穴、についての情報を持っている。 n 次ホモトピー群を定義するために、(付き)n 次元球面から与えられた(基点付き)空間の中への基点を保つ写像はと呼ばれる同値類へと集められる。2つの写像がホモトープ (homotopic) とは、一方から他方へ連続的に変形できることをいう。これらのホモトピー類たちが基点付きの与えられた空間 X の n 次ホモトピー群 (n-th homotopy group) と呼ばれる群 n(X) をなす。異なるホモトピー群を持つ位相空間は決して同じ(同相)ではないが、逆は正しくない。 のホモトピーの概念はカミーユ・ジョルダン (Camille Jordan) によって導入された。.

新しい!!: 超球面とホモトピー群 · 続きを見る »

ホップの定理

ホップの定理 (Hopf theorem) は、微分位相幾何学の定理で、位相的次数は、超球面への連続写像の唯一のホモトピー不変量であるという定理である。.

新しい!!: 超球面とホップの定理 · 続きを見る »

アインシュタイン多様体

微分幾何と数理物理において、アインシュタイン多様体(Einstein manifold)は、リッチテンソルが計量テンソルに比例するリーマン多様体もしくは、擬リーマン多様体である。通常、一般相対論で研究する 4次元のローレンツ多様体とは違い、この条件は、符合と同様に計量の次元も任意であることが可能であるにもかかわらず、この条件と計量が(宇宙定数を持つ)真空のアインシュタイン方程式の解であることとが同値であるとの理由から、アインシュタイン多様体はアルベルト・アインシュタイン(Albert Einstein)の名前に由来している。 M が基礎となる n-次元多様体で、g がその計量テンソルであれば、アインシュタインの条件は、ある定数 k が存在し、 であることを意味する。ここに、Ric は g のリッチテンソルを表わす。k.

新しい!!: 超球面とアインシュタイン多様体 · 続きを見る »

オイラー類

数学において、特に代数トポロジーにおいて、レオンハルト・オイラー(Leonhard Euler)の名前のついたオイラー類(Euler class)は、(oriented)実ベクトルバンドルの特性類である。他の特性類と同様に、オイラー類は、ベクトルバンドルがどれくらい「ツイストしている」かを測る。オイラー類は古典的概念であるオイラー標数を、滑らかな多様体の接バンドルの場合へ一般化したものである。 本記事を通して、E → X は向き付けられた、(rank) r の実ベクトルバンドルである。.

新しい!!: 超球面とオイラー類 · 続きを見る »

ゲーゲンバウアー多項式

数学において、ゲーゲンバウアー多項式(ケーゲンバウアーたこうしき、Gegenbauer polynomials)または超球多項式 (ultraspherical polynomials) C_n^(x) とは、 (1849–1903) にちなんで命名された、区間 上で定義される重み関数 (1-x^2)^ の直交多項式をいう。ゲーゲンバウアー多項式は、ルジャンドル多項式及びチェビシェフ多項式の一般事例であり、の特殊事例である。.

新しい!!: 超球面とゲーゲンバウアー多項式 · 続きを見る »

スマッシュ積

数学において,2つの基点付き空間(すなわち区別された基点を持つ位相空間) と のスマッシュ積(smash product)とは,積空間 において,すべての と に対して と と同一視した商空間である.スマッシュ積は通常 あるいは と書かれる.スマッシュ積は( と がともに等質でない限り)基点の取り方に依存する. と をそれぞれ の部分空間 と と考えることができる.これらの部分空間は一点, の基点で交わる.したがってこれらの部分空間の合併はウェッジ和 と同一視できる.するとスマッシュ積は商 である. スマッシュ積は代数的位相幾何学の一分野ホモトピー論において現れる.ホモトピー論では,すべての位相空間の圏とは異なる空間の圏でしばしば考える.これらの圏のうちスマッシュ積の定義をわずかに修正しなければならないものがある.例えば,2つののスマッシュ積は,定義において積位相ではなくCW複体の積を用いることで,CW複体である.同様の修正は他の圏においても必要である..

新しい!!: 超球面とスマッシュ積 · 続きを見る »

ステレオ投影

テレオ投影(ステレオとうえい、stereographic projection)は、球面を平面に投影する方法の一つである。ステレオ投影は複素解析学、地図学、結晶学、写真術など様々な分野で重要である。 stereographic projection の訳語は分野によって異なる。ステレオ投影は主に物理学や機械工学において用いられる。数学においては写像という意味で立体射影あるいはステレオグラフ射影、地図学では図法という意味で平射図法またはステレオ図法と呼ばれる。このように訳語が異なってはいるが、内容は全て同一視できる。 ステレオ投影は、数学的には写像として定義される。定義域は、球面から光源の一点を除いたところである。写像は滑らかかつ全単射である。また、等角写像、すなわち角度が保存される。一方、長さや面積は保存されない。これはとくに光源点付近では顕著である。 すなわち、ステレオ投影は、いくらかの避けられない妥協を含む、球面を平面に描く方法である。実際面では、コンピュータや、ウルフネットまたはステレオネットと呼ばれるなどを使って、投影図が描かれる。.

新しい!!: 超球面とステレオ投影 · 続きを見る »

スティーフェル・ホイットニー類

数学、特に代数トポロジーや微分幾何学において、スティーフェル・ホイットニー類 (Stiefel–Whitney class) は、実ベクトル束の (topological invariant) であって、ベクトル束の切断がどこでも(線型)独立な集合を構成するための (obstruction) を記述する。ベクトル束のファイバーのベクトル空間としての次元を とすると、0 番目から 番目までスティーフェル・ホイットニー類を持つ。 番目のスティーフェル・ホイットニー類が 0 でないならば、ベクトル束は、どこでも線型独立な切断を 個持つことはない。 番目のスティーフェル・ホイットニー類が 0 でないことは、束のどの切断もある点で 0 とならねばならないことを示している。1 番目のスティーフェル・ホイットニー類が 0 でないことは、ベクトル束が向き付け可能ではないことを示している。たとえば、円上の直線束としてのメビウスの帯の 1 番目のスティーフェル・ホイットニー類は 0 でなく、一方、円上の自明直線束 の 1 番目のスティーフェル・ホイットニー類は 0 である。 エドゥアルト・シュティーフェル (Eduard Stiefel) と (Hassler Whitney) の名前に因んだ命名のスティーフェル・ホイットニー類は、実ベクトル束に付帯する -特性類である。 代数幾何学では、非退化二次形式を持つベクトル束に対してスティーフェル・ホイットニー類の類似も定義されていて、エタールコホモロジー群やミルナーのK-理論に値を持つ。特別な例として、体上の二次形式のスティーフェル・ホイットニー類を定義することもでき、最初の 2つは判別式と (Hasse–Witt invariant) である。 1×R is zero.

新しい!!: 超球面とスティーフェル・ホイットニー類 · 続きを見る »

ソボレフ不等式

数学の解析学の分野には、ソボレフ空間のノルムを含むノルムに関して、ソボレフ不等式(ソボレフふとうしき、)の類が存在する。それらは、ある種のソボレフ空間の間の包含関係を与えるソボレフ埋蔵定理(Sobolev embedding theorem)や、わずかに強い条件の下でいくつかのソボレフ空間は別のものにコンパクトに埋め込まれることを示すレリッヒ=コンドラショフの定理を証明するために用いられる。セルゲイ・ソボレフの名にちなむ。.

新しい!!: 超球面とソボレフ不等式 · 続きを見る »

写像度

写像度(しゃぞうど、degree)とは、コンパクト、弧状連結、向き付けられた同次元の多様体間での連続写像を特徴付ける整数のこと。写像のホモトピー不変量のひとつである。.

新しい!!: 超球面と写像度 · 続きを見る »

図形の一覧

図形とは、様々な形を表現したものである。 ここでは図形を次元で分類するが、まず埋め込み可能なユークリッド空間の次元で分類し、次に位相次元で分類する。たとえば、球面は3次元図形で位相次元は2、コッホ曲線は2次元図形で位相次元は1である。最後に、フラクタル図形を別扱いにし、ハウスドルフ次元(フラクタル次元) dimH を併記する。ハウスドルフ次元は、フラクタル図形では位相次元より大きく、それ以外では位相次元に等しい。主な図形は以下の通り。.

新しい!!: 超球面と図形の一覧 · 続きを見る »

球(きゅう、ball)とは、.

新しい!!: 超球面と球 · 続きを見る »

球対称函数

数学における球対称函数(きゅうたいしょうかんすう、spherically symmetric function)または動径函数(radial function; 放射函数)は、各点における値がその点の偏角成分に依らず動径成分(原点からその点までの距離)のみに依存して決まる函数を言う。 例えばユークリッド平面 上で定義された函数 が二次元の球対称函数であるとは、適当な一変数非負値函数 を用いて の形に表される。球対称函数はと対照を成すものであり、ユークリッド空間上で定義された任意の下降函数 (例えば連続かつな函数)は球対称成分(動径成分)と球面的成分(偏角成分)からなる級数に分解される(展開)。 函数が球対称(回転対称、動径的)であるための必要十分条件はそれが原点を固定する任意の回転変換のもとで不変となることである。言葉を変えれば、-次元ユークリッド空間 上の函数 が球対称となる必要十分条件は、-次元特殊直交群 の任意の元 に対して を満たすことである。球対称函数のこのような特徴付けはシュヴァルツ超函数の球対称性を定義するのにも利用できる。 上のシュヴァルツ超函数 は任意の試験函数 と回転変換 に対し を満たすとき、球対称であるという。 任意の函数 が与えられたとき、その球対称成分(動径成分) は原点を中心とする球面上で平均をとることによって与えられる。特に が局所可積分ならばこれは と書くことができる。ただし、 は -次元球面 の表面積であり、 および とした。このことから、フビニの定理により、局所可積分函数はほとんど全ての において球対称成分は矛盾なく定義されることが従う。 球対称函数のフーリエ変換はふたたび球対称である。それゆえ球対称函数はフーリエ解析において決定的な役割を果たす。さらに言えば、球対称函数のフーリエ変換は典型的には無限遠において非球対称函数よりも強く減衰する振舞いを示す。原点の近傍において有界な球対称函数に対して、そのフーリエ変換は動径 の函数 よりも速く減少する。ベッセル函数は特別なクラスの球体種函数で、フーリエ解析においてラプラス作用素の球対称固有函数として自然に現れる。これらは自然にフーリエ変換の球対称部分と看做せる。.

新しい!!: 超球面と球対称函数 · 続きを見る »

球体

数学における球体(きゅうたい、ball)は球面の内側の空間全体を言う。それが境界点の全体である球面を全く含むとき閉球体(へいきゅうたい、closed ball)、全く含まないとき開球体(かいきゅうたい、open ball)と呼ばれる。 これらの概念は三次元ユークリッド空間のみならず、より低次または高次の空間、あるいはより一般の距離空間において定義することができる。-次元の球体は -次元(超)球体(あるいは短く -球体)と呼ばれ、その境界は(''n''−1)-次元(超)球面'''(あるいは短く -球面)と呼ばれる。例えばユークリッド平面における球体は円板のことであり、それを囲む境界は円周である。また、三次元ユークリッド空間における球体(通常の球体)は二次元球面(通常の球面)によって囲まれる体積を占める。 ユークリッド幾何学などの文脈において、球体 (ball) の意味でしばしば略式的に球 (sphere) と呼ぶ場合がある(球が球面の意である場合もある)。.

新しい!!: 超球面と球体 · 続きを見る »

球面

球面(きゅうめん)とは球体の表面の意である。数学における球面 (sphere) は、距離の定められた空間の定点からの距離が一定であるような点の軌跡として定義される、非常に高い対称性を示す図形である。球面の囲む有界領域を球体あるいは単に球 (ball) と呼ぶ。一般には三次元ユークリッド空間 E3 内のもの、つまり二次元球面を指す場合が多い。.

新しい!!: 超球面と球面 · 続きを見る »

球面調和関数

球面調和関数(きゅうめんちょうわかんすう、)あるいは球関数(きゅうかんすう、)は以下のいずれかを意味する関数である:.

新しい!!: 超球面と球面調和関数 · 続きを見る »

空間充填

間充填(くうかんじゅうてん)、空間分割(くうかんぶんかつ)(英:Space-filling)とは、空間内を図形で隙間なく埋め尽くす操作である。単に充填ともいう。広義のテセレーション (tessellation) とも言うが、テセレーションとは(特にデザイン分野で)2次元ユークリッド空間の充填、つまり平面充填のことを指すのが本来の意味であり、これをより高次の次元にまで当てはめたものが空間充填である。 空間充填によって構成された立体を空間充填立体(英:Space-filling polyhedron)と言い、空間充填によって埋め尽くされた空間を空間充填形という。定義からいえば空間はどんな空間でもよいが、単に空間充填・空間分割といえば、3次元ユークリッド空間の充填であることが多い。 n 次元超球面の多胞体による充填は、n + 1 次元多胞体とみなすことができる。そのため、超球面以外でも n 次元の空間充填は n + 1 次元多胞体と共通点が多く、便宜上多胞体に含めて論ずることもある。.

新しい!!: 超球面と空間充填 · 続きを見る »

結び目 (数学)

数学の特に低次元位相幾何学における結び目(むすびめ、knot; 結び糸)は、円周 の三次元ユークリッド空間 への埋め込みを、適当なホモトピーの違いを除いて考えるものである。このような数学における標準的な結び目の概念と、日常的な概念としての結び目との間の著しい違いは、数学的な結び目は閉曲線—つまり、結んだり解いたりするための「端」が存在しない—となっている点である。また、数学的な結び目に摩擦や厚みと言った物理学的性質も持っていない(そのような性質を勘案した結び目の数学的定義が無いわけではないが)。また、より高次化した の への埋め込み—特に、 のとき—をも「結び目」と呼ぶことがある。結び目を研究する数学の分野は結び目理論と呼ばれ、グラフ理論にも多くの単純な関係がある。.

新しい!!: 超球面と結び目 (数学) · 続きを見る »

点付き空間

数学における点付き空間(てんつきくうかん、pointed space; (基)点付き(位相)空間)は、基点 と呼ばれる区別を受ける点を備えた位相空間を言う。基点というのは、その空間内から選び出された単に特定の一点ということに過ぎないのであるが、しかしいったん選び出されたならば一連の議論の間は基点を変えることはできないし、様々な操作においてその結果として基点がどうなるのかを追うことを免れ得ない。 点付き空間の間の点付き写像 とは、基点を保つ連続写像のことを言う。すなわち、点付き空間 から への点付き写像とは、写像 が各空間の位相 に関して連続で、 を満たすときに言い、それをふつうは のように書く。点付き空間は代数的位相幾何学、特にホモトピー論において重要であり、そこでは基本群などの様々な構成が、基点の選び方に依存して定まる。 点付き集合の概念は、点付き離散空間に他ならないから、重要性はやや落ちる。 点付き空間はしばしば、部分集合が一点集合であるような相対位相の特別の場合ととられる。そうすればホモトピー論の大部分は点付き空間上でふつうに展開でき、相対位相を代数的位相幾何学に持ち込むことができる。.

新しい!!: 超球面と点付き空間 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 超球面と無限 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 超球面と直交群 · 続きを見る »

鏡像

鏡像(きょうぞう)とは一般的な意味では、鏡に映った像のこと。一般的な意味での鏡像は、数学的意味での鏡像と、光の反射の性質によってつながっている。鏡面が完全に平坦ならば鏡像は元の図形と合同になるが、凹面鏡や凸面鏡のように曲面の場合はその限りではない。.

新しい!!: 超球面と鏡像 · 続きを見る »

被覆空間

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」開近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。 被覆空間はホモトピー論、調和解析、リーマン幾何学、微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)。 from a topological space, C, to a topological space, X, such that each point in X has an open neighbourhood evenly covered by p (as shown in the image); the precise definition is given below.

新しい!!: 超球面と被覆空間 · 続きを見る »

調和関数

帯上で定義された調和関数 数学における調和関数(ちょうわかんすう、harmonic function)は、ラプラス方程式を満足する二回連続的微分可能な関数のことをいう。 調和関数に関する重要な問題はディリクレ問題である。ディリクレ問題の解決方法にはいくつかあるが、その中でも重要な一般的方法はディリクレの原理である。 20世紀には、、、小平邦彦らが調和積分論の発展の中心的な役割を果たした。.

新しい!!: 超球面と調和関数 · 続きを見る »

超球の体積

初等幾何学における球体は決められた点から決められた距離以内にある点の全体が空間において占める領域であった。同様のことを -次元ユークリッド空間で行って -次元超球体が定義される。-次元超球体の体積率は数学全般を通して現れる重要な定数の一種である。.

新しい!!: 超球面と超球の体積 · 続きを見る »

超曲面

幾何学における超曲面(ちょうきょくめん、)とは、超平面の概念の一般化である。n 次元の包絡多様体()M を考える。このとき、n − 1 次元の任意の M の部分多様体は、超曲面である。また、超曲面のは 1 である。 代数幾何学において、n次元射影空間における超曲面は、純粋に n − 1 次元の代数的集合に属するものである。したがってそれは、における斉次多項式である単一の関数 F.

新しい!!: 超球面と超曲面 · 続きを見る »

錐 (位相幾何学)

位相幾何学,特に代数的位相幾何学において,位相空間 の錐(すい,cone) とは, と単位区間 の積の商空間 である.直観的には, を円柱にし,円柱の一端を点に押しつぶす. がユークリッド空間の中にあれば, の錐は から別の一点への線分の和集合に同相である.つまり,位相幾何学的な錐は幾何学的な錐と定義されるときには一致する.しかしながら,位相幾何学的な錐の構成の方が一般的である..

新しい!!: 超球面と錐 (位相幾何学) · 続きを見る »

連続体 (位相空間論)

数学の一分野である位相空間論における連続体(れんぞくたい、continuum)は、空でないコンパクトで連結な距離空間、あるいは場合によってはコンパクトで連結なハウスドルフ空間のことを言う。連続体の研究を行う位相空間論の一分科を連続体論 (Continuum theory) と呼ぶ。.

新しい!!: 超球面と連続体 (位相空間論) · 続きを見る »

N=4 超対称ヤン・ミルズ理論

N.

新しい!!: 超球面とN=4 超対称ヤン・ミルズ理論 · 続きを見る »

S10

S10, S-10とは、以下の形容に用いられている。.

新しい!!: 超球面とS10 · 続きを見る »

S4

S4, S 4, Š-4, S.4, S-4.

新しい!!: 超球面とS4 · 続きを見る »

S5

;S5.

新しい!!: 超球面とS5 · 続きを見る »

S7

S7.

新しい!!: 超球面とS7 · 続きを見る »

S8

S8.

新しい!!: 超球面とS8 · 続きを見る »

接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

新しい!!: 超球面と接束 · 続きを見る »

断面曲率

リーマン幾何学において、断面曲率(sectional curvature)は、を記述する方法のひとつである。断面曲率 K(σp) は p の接空間内の 2次元平面 σp に依存する。断面曲率は曲面のガウス曲率であり、σp 方向の点 p から始まる測地線より得られる p での接平面 σp を持つ(言い換えると、この平面は、p でのの下の像である。断面曲率は、多様体上の 2次元のファイバーバンドル上の滑らかな実数値函数である。 断面曲率は、リーマン曲率テンソルを完全に決定する。 p) depends on a two-dimensional plane σp in the tangent space at p. It is the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp (in other words, the image of σp under the exponential map at p). The sectional curvature is a smooth real-valued function on the 2-Grassmannian bundle over the manifold. The sectional curvature determines the curvature tensor completely.-->.

新しい!!: 超球面と断面曲率 · 続きを見る »

斜交群

数学において、斜交群(しゃこうぐん、symplectic group)またはシンプレクティック群は、極めて密接に関連するが、異なる 2 つの群を意味し得る。 この記事では、この二つの群を Sp(2n, F) および Sp(n) と記す。 前者と区別するため、後者は屡、コンパクト斜交群と呼ばれる。 多くの筆者が若干異なる記号を使う傾向にあるが、それは、2 の因数だけ異なる。 ここでの記号は、群を表現するために使う行列の大きさに合わせることとする。.

新しい!!: 超球面と斜交群 · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: 超球面と3次元 · 続きを見る »

4次元

4次元(よじげん、四次元)は、次元が4であること。次元が4である空間を4次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らない。数学においてはユークリッド空間をはじめとしてベクトル空間や多様体など次元を考え得る空間や対象は様々ある(詳細は「次元」および「次元 (数学)」を参照)。.

新しい!!: 超球面と4次元 · 続きを見る »

ここにリダイレクトされます:

0-球面0次元球面10-球面4-球面4次元球面5-球面6-球面7-球面8-球面9-球面N-次元球面N-球面N-球面の体積N-球面の面積N次元球面N球面N球面の体積N球面の面積円 (トポロジー)四次元球面超球面の体積超球面の面積超球面座標

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »