ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

対称群

索引 対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

145 関係: Arthur–Merlinプロトコルたけしのコマ大数学科あみだくじ半線型写像単純加群反対称テンソル反対称性可解群右手系同型写像同種粒子向き付け可能性多体波動関数多重線型写像多重集合外積代数対称代数対称式対称テンソル対称群対称性 (物理学)射影線型群岩波講座 基礎数学巡回グラフ中心電荷三次方程式一般化置換行列一般線型群交差分極交代群交換子部分群二面体群互換代数学建物 (数学)位相的場の理論位数 (群論)作用 (数学)体の拡大余因子展開微分形式忠実表現圭 (数学)マリアン・レイェフスキチャーン・ヴェイユ準同型ハッセ図バーンサイドの補題モノドロミーモジュラー群ヤング図形...ヤング束ラグランジュの定理 (群論)リーマン予想ルート系ワイル群ヘルマン・ワイルブリュア分解ブレイド群ブロッホ=ドミニシスの定理パフィアンピーターセングラフディンキン図形ホイン函数アルティンのL-函数アーベル多様体エミー・ネーターエディントンのイプシロンエニオンカードのシャッフルガロア理論ガロア群キュリーの原理クリフォード代数クルル・シュミットの定理クロネッカーのデルタゲージ理論コーシーの定理 (群論)コーシー・ビネの公式コクセター群シューア多項式シローの定理スピン角運動量ゼロの偶奇性写像写像の合成全単射八元数共役類回転 (ベクトル解析)四次方程式線型代数学総和置換置換 (数学)置換の符号置換行列群 (数学)群の中心群の圏群の生成系群の表現群の表示群作用群論群論の用語結晶学組み紐 (数学)組成列環上の射影直線特性部分群独立同分布直交群表現論行列行列式行列群転倒 (数学)転置式暗号輪積部分群の指数自己同型自然数の分割GNU Scientific LibraryΣΤMagma (数式処理システム)NHK高校講座 数学基礎NUMBERS 天才数学者の事件ファイルP-群Q-類似S1S10S2S3S4S5S7S8SN抽象添字記法正二十面体数学ガール時間順序積56 インデックスを展開 (95 もっと) »

Arthur–Merlinプロトコル

計算複雑性理論におけるArthur–Merlinプロトコル(Arthur–Merlin protocol)あるいは、Merlin–Arthurプロトコル(Merlin–Arthur protocol)は、検証者のコイン投げが公開されている(使用する乱数が証明者に知られている)タイプの対話型証明プロトコルである。そのようなプロトコルを持つ言語のクラスとして、AM及びMAがそれぞれ定義され、本項では主にこのクラスについて説明する。によって導入された。.

新しい!!: 対称群とArthur–Merlinプロトコル · 続きを見る »

たけしのコマ大数学科

『たけしのコマ大数学科』(たけしのコマだいすうがくか)は、2006年4月13日から2013年9月23日まで、フジテレビで放送されていた教養・バラエティ番組。ビートたけしの冠番組。フジテレビ系列を中心に全国各地でも放送(後述)。2008年3月(第82回)までは『たけしのコマネチ大学数学科』の番組名で放送された。.

新しい!!: 対称群とたけしのコマ大数学科 · 続きを見る »

あみだくじ

あみだくじ(阿弥陀籤)とは、線のはしに当たりはずれなどを書いて隠し、各自が引き当てるくじのこと。現在は、平行線の間に横線を入れ、はしご状にすることが多い。 もともとは、人数分の線を引き、一端にそれぞれ異なる金額を書いて隠し、各自が引き当てた金額を出させ、集めた金で茶菓子などを買い、平等に分配する仕組みだった。現在では、用途は広がっており、何かの順番を決めたり、何かで言い争った場合に○を引き当てた方が勝ちとしたりして、幅広く利用されている。.

新しい!!: 対称群とあみだくじ · 続きを見る »

半線型写像

数学の線型代数学あるいは特に射影幾何学における半線型写像(はんせんけいしゃぞう、semilinear transformation; 半線型変換)は、ベクトル空間の間の写像であって、「体の自己同型でひねる違いを除いて」線型写像となっているようなものを言う(故に「半」線型)。 具体的に、体 上の体の自己同型 を一つ固定して()、K 上のベクトル空間 の間の写像 が.

新しい!!: 対称群と半線型写像 · 続きを見る »

単純加群

上の左加群 が非自明な部分 -加群をもたないとき、 を単純加群(たんじゅんかぐん、simple module)または既約加群(きやくかぐん、irreducible module)という。これは任意の について となることと同値である。 これは左 -加群の圏 において、すべてのゼロでない準同型写像 は単射である、あるいはすべてのゼロでない準同型写像 は全射であることとしても特徴づけられる。 右加群に対しても同様に定義される。.

新しい!!: 対称群と単純加群 · 続きを見る »

反対称テンソル

数学および理論物理学において、テンソルが添字の対に関して反対称 (anti­symmetric) もしくは歪対称 (skew-symmertic) であるとは、それら添字の入れ替えに関して符号が反転することを言う。また、交代的 (alternating) であるとは、それらを等しいと置いたとき零になることを言う。の標数が でないときこれら二つの概念は一致する(多重線型写像の項も参照)。.

新しい!!: 対称群と反対称テンソル · 続きを見る »

反対称性

反対称性(はんたいしょうせい)とは数学で、ある要素にある変換を施した結果が、元の要素に逆符号を付けたもの(実数でいえば絶対値が同じで正負が逆)と等しくなる、という性質をいう。対象分野によっては交代性(こうたいせい)または歪対称性(わいたいしょうせい)とも呼ばれる。このような要素を「その変換に対して反対称である」という。変換によって変化しない「対称性」に類似した性質であり、対称性・反対称性とも全くない「非対称性」とは異なる。反対称性の要素に変換を複数回施すと、元と同じになる。.

新しい!!: 対称群と反対称性 · 続きを見る »

可解群

数学、特に群論の分野において、可解群(かかいぐん、solvable group, soluble group、Auflösbare Gruppe)は、アーベル群から群の拡大を用いて構成できる群のことである。つまり、可解群は導来列が自明な群で終わるような群のことである。 歴史的には、「可解」という語はガロア理論による5次以上の一般の方程式は代数的に解けないこと(アーベル–ルフィニの定理)の証明から来ている。特に、標数0の体上の代数方程式が根号を用いて解けるのは対応するガロア群が可解群であるとき、およびそのときに限る。.

新しい!!: 対称群と可解群 · 続きを見る »

右手系

右手系(みぎてけい、right-handed system)または正系(せいけい、positive-oriented system)は、線型代数学における座標系で、右手の法則(right-hand rule)に従うものを指し、左手系と区別される。多くの分野では右手系が標準とされ、左手系は非標準的とされる。 右手系・左手系という性質は、直交座標系とは限らない座標系に対しても考えられる。より抽象的には、順序付けられた基底に対して定義される。また、3次元に限らず、2次元以上の任意の次元のユークリッド空間に対しても定義される。.

新しい!!: 対称群と右手系 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 対称群と同型写像 · 続きを見る »

同種粒子

同種粒子(Identical particles)は原理的に区別することができない粒子のことである。同種粒子に含まれるものとして、電子などの素粒子や、原子や分子などの複合粒子がある。 量子論では複数の同種粒子を含む系の状態ベクトルや物理量(オブザーバブル)は一定の対称性を持つものに限られる。その対称性は、基本変数を粒子の「位置と運動量」にとった量子論(量子力学)では少し不自然にも見える形で現れる(波動関数の対称性、反対称性など)。この不自然さは、個々の粒子に別々の「位置と運動量」を割り当てるのは粒子が区別できることが大前提であるのに、区別ができない粒子にそれをやってしまったことによる。そこで基本変数を「場」とその共役運動量にとれば、同種粒子の区別がつかないことや、状態ベクトルや物理量の対称性なども自動的に理論に組み込まれ、すっきりしたものになる。 同種粒子はボゾンとフェルミオンに大別できる。ボゾンは量子状態を共有でき、フェルミオンはパウリの排他原理のため量子状態を共有できない。ボゾンの例として、フォトン、グルーオン、フォノン、4He原子がある。フェルミオンの例として、電子、ニュートリノ、クォーク、プロトン、中性子、3He原子がある。 粒子が区別できないという事実は統計力学に重要な影響を与える。統計力学の計算では確率が大きく関係しており、確率は考えている対象が区別できるかどうかで決定的な違いが現れる。その結果、同種粒子は区別できる粒子とは大きく異なる統計的振る舞いを示す。その例がギブズのパラドックスである。.

新しい!!: 対称群と同種粒子 · 続きを見る »

向き付け可能性

数学では、向き付け可能性(orientability)とは、ユークリッド空間内の曲面の性質であり、曲面のすべての点で法線の方向を整合性を持って選択できるか否かという性質である。曲面の法線の方向の選択は、例えばストークスの定理に必要であるように、右手の法則を使い曲面内のループの「時計回り」方向を決めことができる。より一般に、抽象的な曲面や多様体の向き付け可能性とは、多様体内のすべてのループの「時計回り」方向を整合性を持って選択可能か否かという性質である。同じことであるが、曲面が向き付け可能であるとは、空間内の のような二次元の図形が、空間の中を(連続的に)動き回って、スタート地点へ戻ってきても、決して自分自身の鏡像 にはならない場合を言う。 向き付け可能性の考え方は、同じように高次元の多様体へ一般化できる。向きの選択が整合性を持つ多様体を向き付け可能といい、連結で向き付け可能な多様体は、ちょうど 2つの異なる向き付けが可能である。この設定で、必要な応用や一般性の度合いに依存した様々な向き付け可能性の同値な定式化が可能である。一般の位相多様体への応用する定式化は、ホモロジー論の方法を活用することが多いのに対し、微分可能多様体(differentiable manifold)に対してはより詳細な構造があり、微分形式の言葉で定式化できる。空間の向き付け可能性の考え方の重要な一般化は、ある他の空間(ファイバーバンドル)にパラメトライズされた空間の族の向き付け可能性である。その際には、向きは、パラメータの値の変化につれて、各々の空間が連続的に変化するよう選択せねばならない。.

新しい!!: 対称群と向き付け可能性 · 続きを見る »

多体波動関数

量子力学における多体波動関数とは、多粒子系の状態を表す波動関数のこと。 多粒子系の状態を占有数表示で表すことを第二量子化と呼ばれるのに対し、多体波動関数で状態を表すことを第一量子化と呼ばれることがある。.

新しい!!: 対称群と多体波動関数 · 続きを見る »

多重線型写像

線型代数学において、多重線型写像(たじゅうせんけいしゃぞう、multilinear map)は各変数ごとに線型な多変数の関数である。正確には、多重線型写像は、V_1,\ldots,V_n とW\! をベクトル空間(あるいは可換環上の加群)として、次の性質を満たす写像 である: 各 i\! に対して、v_i\! を除くすべての変数を定数のまま止めると、f(v_1,\ldots,v_n) は v_i\! の線型写像である。 一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体であれば、多重線型形式と呼ばれる。多重線型写像や多重線型形式は多重線型代数において研究の基本的な対象である。 すべての変数が同じ空間に属していれば、、反対称、 k 重線型写像を考えることができる。基礎環(あるいは体)の標数が 2 でなければ後ろ2つは一致し、標数が 2 であれば前2つは一致する。 f\colon V_1 \times \cdots \times V_n \to W\text を有限次元ベクトル空間の間の多重線型写像としよう。V_i\! の次元を d_i\!, W\! の次元を d\! とする。各 V_i\! に対して \ を、W\! に対して基底 \ を選べば(ベクトルにはボールドを用いた)、スカラー A_^k の集合を次によって定義できる: するとスカラー \ は多重線型写像 f\! を完全に決定する。とくに、1 \leq i \leq n\! に対して であれば、 -->f\colon R^2 \times R^2 \times R^2 \to R を考えよう。V_i.

新しい!!: 対称群と多重線型写像 · 続きを見る »

多重集合

数学における多重集合(たじゅうしゅうごう、multiset)あるいはバッグ(bag; かばん)は、集合に同じ値の元がいくつも含まれるとき、各元がそれぞれいくつ含まれるかという重複度を考え合わせた集合概念である。非順序対、非順序組 (unordered tuple) ともいう。 クヌースによれば、1970年代に最初に多重集合 (multiset) という言葉を提案したのは、オランダ人数学者のニコラース・ホーバート・ド・ブラン (IPA) であるという クヌースは同書で、多重集合に対して提案された他の名前(例えば,リスト(list)、まとまり(bunch)、バッグ(bag)、堆積(heap)、標本(sample)、重みつき集合(weighted set)、コレクション(collection)、組(suite).など)も提示している。 多重集合の歴史に関するサーベイ論文である。 。しかし、数学における多重集合の概念は、"multiset" という名称がつけられる90年以上も前にすでに使用が認められる。実際、1888年に発表されたリヒャルト・デデキントの有名な論文 "Was sind und was sollen die Zahlen?" (「数とは何か、何であるべきか?」)において、実質的に多重集合の概念が用いられている。.

新しい!!: 対称群と多重集合 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: 対称群と外積代数 · 続きを見る »

対称代数

数学において、体 K 上のベクトル空間 V 上で定義される対称代数(たいしょうだいすう、symmetric algebra)S(V) あるいは Sym(V) は、V を含む K 上の自由可換単位的結合代数である。 対称代数の元は、座標の取り方に依らず V の元を不定元とする多項式に対応する。このとき、対称代数の双対 S(V&lowast) の元は V 上の多項式(函数)に対応する。 対称代数と V 上の対称テンソル空間とを混同してはならない。.

新しい!!: 対称群と対称代数 · 続きを見る »

対称式

対称式(たいしょうしき、symmetric polynomial)あるいは対称多項式(たいしょうたこうしき)とは、変数を入れ替えても変わらない多項式のことである。.

新しい!!: 対称群と対称式 · 続きを見る »

対称テンソル

数学における対称テンソル(たいしょうテンソル、symmetric tensor)は、その に関して、任意の -次置換の作用に関して不変なテンソルを言う。 より具体的には、テンソルを多重線型写像 と見るならば、その引数となるベクトルの任意の置換 について を満たすもの、あるいは座標を用いて成分で表すならば を満たすものである。 有限次元ベクトル空間 上の-次対称テンソル全体の成す空間は、 上の -次斉次多項式全体の成す空間の双対に自然同型になる。標数 の体上では、対称テンソル全体の成すは 上の対称代数に自然に同一視される。関連する概念として、反対称テンソルや交代形式がある。対称テンソルは工学、物理学、数学において広く生じる。.

新しい!!: 対称群と対称テンソル · 続きを見る »

対称群

対称群(たいしょうぐん、)とは、「ものを並べ替える」という操作を元とする群である。この場合の「ものを並べ替える」操作のことを置換(ちかん、)という。数学の議論の様々な場面で「番号づけられて並んでいるものを入れ替える」「入れ替えの可能性すべてを調べる」ことが問題となり、対称群はそのような議論を定式化するために用いられる。置換のうちで特別なものだけを集めて得られる群は置換群(ちかんぐん、)と呼ばれる。置換群が空間 の変換群として与えられているとき、 の元 の置換は で与えられる の部分群の分だけ潰れているが、これは のなかに と「同じ」元が複数含まれている場合に対応しており、 の中でこれらを区別することができれば の元の置換から対称群 が回復される。.

新しい!!: 対称群と対称群 · 続きを見る »

対称性 (物理学)

対称性ラベルを示す面心立方格子構造の第一ブリュアンゾーン 物理学における対称性(たいしょうせい、symmetry)とは、物理系の持つ対称性 — すなわち、ある特定の変換の下での、系の様相の「不変性」である。.

新しい!!: 対称群と対称性 (物理学) · 続きを見る »

射影線型群

数学における射影線型群(しゃえいせんけいぐん、projective linear group)あるいは射影一般線型群(しゃえいいっぱんせんけいぐん、projective general linear group)とは一般線型群の中心による剰余群のことである。 同様に、射影特殊線型群(しゃえいとくしゅせんけいぐん、projective special linear group)とは特殊線型群の中心による剰余群のことである。 有限体上の射影特殊線型群はほとんどの場合に非可換有限単純群となる。 これらの群は射影空間に忠実に作用する。.

新しい!!: 対称群と射影線型群 · 続きを見る »

岩波講座 基礎数学

岩波講座 基礎数学(いわなみこうざ きそすうがく)とは、岩波書店から分冊形式で出版された数学書のシリーズ。これらの内いくつかは、後に岩波基礎数学選書(いわなみきそすうがくせんしょ)シリーズとして、一冊本として、一部修正されて再版された。.

新しい!!: 対称群と岩波講座 基礎数学 · 続きを見る »

巡回グラフ

抽象代数学の一分野である群論において、群の巡回グラフ(じゅんかいグラフ、英:cycle graph)は、群の様々な巡回を図示し、特に小さな有限群の構造を視覚化するのに有効である。 位数が 16 未満の群において、巡回グラフは群を(同型の意味で)決定する。 巡回とは、ある群の元 a の冪の集合のことで、ここで 要素 a の n 乗 an は、a に自分自身を n − 1 回掛け算した積として定義される。 このとき、a は巡回を生成すると言う。 有限群の場合、a のある冪乗は、群の単位元に等しくなければならない。 この様な最小の冪を巡回の位数と言う。 巡回グラフでは、巡回は多角形の列で表現され、頂点は群の要素を表現し、そして連結する辺は多角形中の全要素が同一の巡回に含まれることを示す。.

新しい!!: 対称群と巡回グラフ · 続きを見る »

中心電荷

理論物理学では、中心電荷(、あるいはセントラルチャージ)は、他のすべての対称作用素と可換である作用素 Z のことである。付随している形容詞「セントラル」は、対称群の中心を意味する。中心とは、元の群のほかのすべての元と可換である元からなる部分群のことを言い、リー代数の中で考えられることが多い。2次元の共形場理論のような場合には、中心電荷は、対称性の生成子ではない作用素を含む他の作用素のすべてと可換である。さらに、ネーターの定理により、中心電荷は対称群の中心拡大の中心と対応する電荷である。 超対称性理論では、この定義は(supergroups)と(Lie superalgebra)を持つ理論へ拡張することができる。中心電荷はすべての他の超対称性の生成子と可換であるようなすべての作用素である。(extended supersymmetry)を持つ理論は、典型的にこの種類の作用素(演算子)を多く持っている。弦理論では、第一量子化の中で、これらの作用素は、様々な弦や(brane)の巻き数((topological quantum number))としての解釈も持っている。 共形場理論では、中心電荷はストレス・エネルギーテンソルの 2つの成分の交換関係に現れる(すべての他の作用素(演算子)と可換な)の項である。 Category:場の量子論 Category:物理学.

新しい!!: 対称群と中心電荷 · 続きを見る »

三次方程式

三次方程式(さんじほうていしき、cubic equation)とは、次数が 3 であるような代数方程式の事である。この項目では主に、実数を係数とする一変数の三次方程式を扱う。.

新しい!!: 対称群と三次方程式 · 続きを見る »

一般化置換行列

数学の分野において、一般化置換行列(いっぱんかちかんぎょうれつ、)あるいは単項行列(たんこうぎょうれつ、)とは、置換行列と同様の非ゼロ成分の配置パターン、すなわち、各列と各行に必ず唯一つの非ゼロ成分が存在するようなパターンを持つ行列であるが、それらの成分が必ず 1 である置換行列とは異なり、一般化置換行列ではそれらの成分は非ゼロであればどのような値でもよい。次の行列は、一般化置換行列の一例である: 0 & 0 & 3 & 0\\ 0 & -2 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\end.

新しい!!: 対称群と一般化置換行列 · 続きを見る »

一般線型群

数学において、一般線型群(いっぱんせんけいぐん、general linear group)とは線型空間上の自己同型写像のなす群のこと。あるいは基底を固定することで、正則行列のなす群のことを指すこともある。.

新しい!!: 対称群と一般線型群 · 続きを見る »

交差分極

CPパルスシークエンス 核磁気共鳴における交差分極(こうさぶんきょく、cross-polarization; CP)とは、測定したい核の緩和時間が長く感度が悪い場合に、プロトンの磁化を測定する核に移動させることで、感度の向上と測定時間の短縮をする手法のことである。固体核磁気共鳴などで用いられる.

新しい!!: 対称群と交差分極 · 続きを見る »

交代群

交代群(こうたいぐん、alternating group, Alternierende Gruppe)とは、有限集合の偶置換全体がなす群である。集合 上の交代群は n 次の交代群、もしくは n 文字の交代群 (the alternating group on n letters) と呼ばれ、An もしくは Alt(n), \mathfrak_n という記号で表す。これは n 変数の交代式を不変とするような変数の置換がなす群と思ってもよい。 例として、4つの元からなる集合 の交代群 A4 は以下のようになる。A4.

新しい!!: 対称群と交代群 · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

新しい!!: 対称群と交換子部分群 · 続きを見る »

二面体群

二面体群(にめんたいぐん、dihedral group)とは、正多角形の対称性を表現した数学的対象である。より正確には、正多角形を自分自身に移す合同変換全体の成す群のことである。そのような合同変換は、回転と鏡映の二種類がある。二面体群は、有限非可換群の最も単純な例であり、群論、幾何学、化学などの分野において重要な役割を果たす。類似の概念は、3次元以上の正多面体や正多胞体に対しても与えることができる。「二面体」とは、正多角形を3次元空間内で見て裏表の区別を付けたもの、といった意味合いである。.

新しい!!: 対称群と二面体群 · 続きを見る »

互換

互換(ごかん).

新しい!!: 対称群と互換 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 対称群と代数学 · 続きを見る »

建物 (数学)

数学における(ティッツの、あるいはブリュア=ティッツの)建物(たてもの、building, immeuble)は、フランソワ・ブリュアとジャック・ティッツに名を因む、旗多様体、有限射影平面およびリーマン対称空間のある種の側面を一斉に一般化する組合せ論的かつ幾何学的な構造である。初め、建物はジャック・ティッツによってリー型の例外群の構造を理解するための手段として導入され、その理論は自由群の研究に木が用いられたのと同じ仕方で、 ''p''-進リー群その離散的対称変換部分群の等質空間の幾何および位相を研究するのにも用いられた。.

新しい!!: 対称群と建物 (数学) · 続きを見る »

位相的場の理論

位相的場の理論(いそうてきばのりろん)もしくは位相場理論(いそうばりろん)あるいはは、を計算する場の量子論である。 TQFTは物理学者により開拓されたにもかかわらず、数学的にも興味を持たれていて、結び目理論や代数トポロジーの 4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している。サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている。 物性物理学では、位相的場の理論は、分数量子ホール効果や、凝縮状態や他の状態のような、の低エネルギー有効理論である。.

新しい!!: 対称群と位相的場の理論 · 続きを見る »

位数 (群論)

数学の分野である群論において、m.

新しい!!: 対称群と位数 (群論) · 続きを見る »

作用 (数学)

数学における作用(さよう、action, operation)は、代数系にその上の変換写像の集まりを代数的構造として考え合わせたもの。幾何学的には空間(俗な意味で言えば図形)の運動の様子とその原因となるものの構造を記述する概念である。 抽象群などの抽象的に与えられる代数的構造を、その作用を通して具体的な空間上の運動全体がつくる構造として表現することによって特徴付けるという手法に基づいて展開される数学の一分野は表現論と呼ばれる。.

新しい!!: 対称群と作用 (数学) · 続きを見る »

体の拡大

抽象代数学のとくに体論において体の拡大(たいのかくだい、field extension)は、体の構造や性質を記述する基本的な道具立ての一つである。 体の拡大の理論において、通常は非可換な体を含む場合を扱わない(そのようなものは代数的数論に近い非可換環論あるいは多元環論の範疇に属す)。ただし、非可換体(あるいはもっと一般の環)の部分集合が、非可換体の演算をその部分集合へ制限して得られる演算により、その非可換体を上にある体として(可換な)体構造をもつとき、元の非可換体の(可換)部分体と呼び、元の非可換体を(非可換)拡大体と呼ぶことがある。 以下本項では特に断りの無い限り、体として可換体のみを扱い、単に体と呼称する。.

新しい!!: 対称群と体の拡大 · 続きを見る »

余因子展開

線型代数学における余因子展開(よいんしてんかい、cofactor expansion)、あるいはピエール・シモン・ラプラスの名に因んでラプラス展開とは、 行列 の行列式 の、 個の の 小行列の行列式の重み付き和としての表示である。余因子展開は行列式を見るいくつかの方法の1つとして理論的に興味深いし、行列式の実際の計算においても有用である。 の -は次で定義されるスカラー である: ただし は の -、つまり、 から第 行と第 列をとり除いて得られる 行列の行列式である。 すると余因子展開は次で与えられる:.

新しい!!: 対称群と余因子展開 · 続きを見る »

微分形式

数学における微分形式(びぶんけいしき、differential form)とは、微分可能多様体上に定義される共変テンソル場である。微分形式によって多様体上の局所的な座標の取り方によらない関数の微分が表現され、また多様体の内在的な構造のみによる積分は微分形式に対して定義される。微分多様体上の微分形式は共変テンソルとしての座標変換性によって、あるいは接ベクトル空間上の線型形式の連続的な分布として定式化される。また、代数幾何学・数論幾何学や非可換幾何学などさまざまな幾何学の分野でそれぞれ、この類推として得られる微分形式の概念が定式化されている。.

新しい!!: 対称群と微分形式 · 続きを見る »

忠実表現

数学、特に表現論という抽象代数学の一分野において、群 のベクトル空間 上の忠実表現(ちゅうじつひょうげん、faithful representation) とは、 の異なる元 が異なる線型写像 によって表現される線型表現のことである。 より抽象的な言葉では、これが意味するのは群準同型 が単射であるということである。 注意: の体 上の表現は事実上 加群と同じである( は群 の群環を表す)が、 の忠実表現が群環の忠実加群であるとは限らない。実は任意の忠実 加群は の忠実表現であるが、逆は成り立たない。例えば対称群 の置換行列による 次元の自然表現を考えると、これは確かに忠実であるが、群の位数は である一方 行列の全体は 次元のベクトル空間をなすので、 が 以上であれば、次元勘定により( だから)置換行列の間に線型独立性が生じなければならず、したがって群環上の加群は忠実ではない。.

新しい!!: 対称群と忠実表現 · 続きを見る »

圭 (数学)

数学における圭(けい)、分配亜群(ぶんぱいあぐん、дистрибутивныи Группоид; destributive groupoid, quandle; カンドル)および残滓(ざんし、rack; ラック)は、結び目の局所変形であるライデマイスター移動を図式操作と考えたときに抽出される公理と類似の公理を満たす二項演算を備えた集合である。 主に結び目理論を背景として研究されるものであるが、抽象代数学的な構造としては、自身の右からの作用を備えた代数系であると見なすことができる。.

新しい!!: 対称群と圭 (数学) · 続きを見る »

マリアン・レイェフスキ

マリアン・アダム・レイェフスキ(波:Marian Adam Rejewski, 1905年8月16日 - 1980年2月13日)は、ポーランドの数学者・暗号研究者。1932年にエニグマ暗号を破った。エニグマとは、ナチス・ドイツで使用された最も重要な暗号機である。レイェフスキとポーランド軍参謀本部第2部暗号局の同僚たち(特にヘンリク・ジガルスキやイェジ・ルジェツキ)の成果は、第二次世界大戦中、イギリスがドイツの暗号化された通信を解読することを可能にした。このことは連合国側の勝利の要因のひとつともなる。.

新しい!!: 対称群とマリアン・レイェフスキ · 続きを見る »

チャーン・ヴェイユ準同型

チャーン・ヴェイユ準同型(Chern–Weil homomorphism)はチャーン・ヴェイユ理論の基本構成であり、微分可能多様体 M に対して M のド・ラームコホモロジーと M の曲率を関連付けている。つまり、(微分)幾何学とトポロジーの関連づけを意味する。1940年代以来の陳省身とアンドレ・ヴェイユの理論は、特性類の理論での重要なステップである。この理論はガウス-ボネの定理の一般化でもある。 \mathbb K により実数 もしくは 複素数 を表すことにする。G は実もしくは複素リー群でリー代数 \mathfrak g を持っているとする。 で、\mathfrak g の上の \mathbb K に値を持つ多項式のベクトル空間の代数を表すとする。\mathbb K(\mathfrak g^*)^ を G の随伴作用の下で次の条件を満たす \mathbb K(\mathfrak g^*) の固定点のなす部分代数とする。すべての f\in\mathbb K(\mathfrak g^*)^.

新しい!!: 対称群とチャーン・ヴェイユ準同型 · 続きを見る »

ハッセ図

ハッセ図(ハッセず、英: Hasse diagram)は、数学における有限半順序集合を単純に図示する方法のひとつで、半順序のを描いたものである。具体的には有限半順序集合 (S, ≤) があるとき、S の個々の元を頂点とし、x < y で、かつ x < z < y となるような z が存在しない場合にのみ x から y に上向きの線(辺)を描く(ここで二項関係 < は全ての x について (x, x) という元を ≤ から除くことで得られる)。 この場合、「 y は x をする」または「 y は x の immediate successor(直接の後続)である」という。さらに、各辺が両端の頂点以外を通らないように頂点を配置する必要がある。このような図(頂点にはラベルが付属するものとする)は半順序を一意に特定し、任意の有限な半順序では推移簡約が一意に定まる。ただし、図における元の配置の仕方は様々なものが考えられ、ひとつの順序集合に対して見た目の異なるハッセ図が多数存在することになる。 ハッセ図はドイツの数論学者ヘルムート・ハッセ(1898年–1979年)に因んで名付けられている。これはハッセが部分体や拡大体がなす半順序集合を図示するために効果的に活用したからである。しかし、ハッセが最初にこの図を使ったわけではなく、少なくとも では既にこの図が使われている。ハッセ図は半順序集合を手で図示する技法として生まれたが、最近ではグラフ描画技法を使って自動的に描くことができる。 「ハッセ図」という言葉は、個々のグラフの描画とは関係なく、抽象概念としての有向非循環グラフの推移簡約を指すこともある。ただし、本項目ではこの意味では使わない。.

新しい!!: 対称群とハッセ図 · 続きを見る »

バーンサイドの補題

バーンサイドの補題(Burnside's lemma)、あるいはバーンサイドの数え上げ補題、コーシー・フロベニウスの補題、軌道の数え上げ補題とは、対称性を考慮して数学的な対象を数え上げるときに有用な群論の結果である。 以下では は有限群で集合 に作用しているとする。群 の各元 に対して で元 によって固定されるすべての の元からなる集合を表す。バーンサイドの補題は軌道の数 || は次の式で表せることを主張している。 つまり軌道の数(これは自然数あるいは+∞)は群 の元による固定点の数の平均(これも自然数あるいは+∞)と等しい。もし が無限群ならば || による除法は定義されないが、その場合には次の基数に関する主張が成り立つ。.

新しい!!: 対称群とバーンサイドの補題 · 続きを見る »

モノドロミー

数学では、モノドロミー (monodromy) は、解析学、代数トポロジー、代数幾何学や微分幾何学の観点から特異点の周りで対象がどのように振舞うかを研究する。名前が意味しているように、モノドロミーの基本的な意味は、「ひとりで回る」という意味である。被覆写像と被覆写像の分岐点への退化とは密接に関係している。モノドロミー現象が生ずることは、定義したある函数が一価性に失敗することを意味し、特異点の周りを回る経路を動くことである。このモノドロミーの失敗は、モノドロミー群を定義することによりうまく測ることができる。モノドロミー群は、「回る」ことに伴い起きることをエンコードするデータに作用する群である。.

新しい!!: 対称群とモノドロミー · 続きを見る »

モジュラー群

数学においてモジュラー群(modular group)とは、数論、幾何学、代数学や他の現代の数学の分野における基礎研究対象であり、幾何学的変換群や行列群により表されるものである。.

新しい!!: 対称群とモジュラー群 · 続きを見る »

ヤング図形

数学において、ヤング盤(ヤングばん、Young tableau) および ヤング図形(ヤングずけい、Young diagram)とは、表現論で使われる組合せ論的図式である。 これは、対称群の群表現を記述しその性質を調べるのに便利である。 ヤング盤は、ケンブリッジ大学の英国人牧師・数学者アルフレッド・ヤング(Alfred Young、1873–1940) により 1900 年に導入された。 その理論は、アルフレッド・ヤング自身およびアラン・ラスクー(Alain Lascoux)、パーシー・マクマホン(Percy Alexander MacMahon)、ギルバート・ロビンソン(Gilbert de Beauregard Robinson)、ジァン・カルロ・ロータ(Gian-Carlo Rota)、マルセル・ポール・シュッツェンベルジェ(Marcel-Paul Schützenberger)、リチャード・スタンレー(Richard P. Stanley)その他の数学者により、更に発展した。.

新しい!!: 対称群とヤング図形 · 続きを見る »

ヤング束

ヤング束のハッセ図 数学において、ヤング束は全ての自然数の分割からなる束である。「On quantitative substitutional analysis」などで対称群の表現論を発展させた、にちなんで名付けられた。ヤングの理論において、現在ではヤング図形と呼ばれる対象やその半順序は、決定的な重要な役割を果たした。によって、ヤング束は差分半順序集合の最も単純な例とされるなど、ヤング束は代数的組合せ論においてよく現れる。そして、アフィンリー代数の結晶基底とも密接に関連している。.

新しい!!: 対称群とヤング束 · 続きを見る »

ラグランジュの定理 (群論)

群論において、ラグランジュの定理(英語:Lagrange's theorem)とは、次のような定理である。 実は、任意の群に対し、(選択公理を認めれば)指数を用いて次のような式が成り立つ。.

新しい!!: 対称群とラグランジュの定理 (群論) · 続きを見る »

リーマン予想

1.

新しい!!: 対称群とリーマン予想 · 続きを見る »

ルート系

数学において,ルート系(root system,système de racines)とはある幾何学的な性質を満たすユークリッド空間のベクトルの配置である.これはリー群やリー環の理論において基本的な概念である.リー群(や代数群のような類似物)やリー環は20世紀の間に数学の多くの部分で重要になってきたから,ルート系の一見すると特別な性質に反してそれらは多くの分野に応用される.さらに,ディンキン図形によるルート系の分類体系は(のような)リー理論とあからさまなつながりの全くない数学の分野において現れる.最後に,ルート系はにおけるように,それ自身重要である..

新しい!!: 対称群とルート系 · 続きを見る »

ワイル群

数学、特にリー環の理論において、ルート系 のワイル群(Weyl group)は、ルート系のの部分群である。具体的には、ルートに直交する超平面に関する鏡映によって生成される部分群のことで、そのようなものとしてである。抽象的には、ワイル群はであり、その重要な例である。 半単純リー群、半単純リー環、線型代数群、などのワイル群はその群あるいは環のルート系のワイル群である。 名前はヘルマン・ワイル (Hermann Weyl) にちなむ。.

新しい!!: 対称群とワイル群 · 続きを見る »

ヘルマン・ワイル

ヘルマン・クラウス・フーゴー・ワイル(, 1885年11月9日 - 1955年12月8日)は、ドイツの数学者。ドイツ語の発音に従ってヴァイルとも表記される。 数論を含む純粋数学と理論物理学の双方の分野で顕著な業績を残した。20世紀において最も影響力のある数学者であるとともに、初期のプリンストン高等研究所の重要なメンバーであった。研究の大半はプリンストンとスイス連邦工科大学で行われたものであったが、ダフィット・ヒルベルトとヘルマン・ミンコフスキーによって確立されたゲッティンゲン大学の数学の伝統の継承者でもあった。 ワイルは空間、時間、物質、哲学、論理、対称性、数学史など、多岐に渡る分野について多くの論文と著書を残した。彼は一般相対性理論と電磁気学を結び付けようとした最初の人物の一人であり、アンリ・ポアンカレやヒルベルトの唱えた'普遍主義'について、同時代の誰よりも深く理解していた。特にマイケル・アティヤは、数学上の問題に取り組む際、常にワイルが先行する研究を行っていたと述懐している。 アンドレ・ヴェイユ と名前がよく似ているため、.

新しい!!: 対称群とヘルマン・ワイル · 続きを見る »

ブリュア分解

数学におけるブリュア分解(ぶりゅあぶんかい、Bruhat decomposition)G.

新しい!!: 対称群とブリュア分解 · 続きを見る »

ブレイド群

数学において、 本の糸のブレイド群(braid group)(組みひも群とも呼ぶ)は、と記し、直感的には幾何学的に描かれる群であり、ある意味で 対称群 を一般化する。ここに は自然数であり、 であれば、 は(infinite group)である。ブレイド群は、結び目をあるブレイド(組みひも)の閉じた形として表現することができるので、結び目理論に応用を持つ。 n, is a group which has an intuitive geometrical representation, and in a sense generalizes the symmetric group.

新しい!!: 対称群とブレイド群 · 続きを見る »

ブロッホ=ドミニシスの定理

統計物理学において、ブロッホ=ドミニシスの定理(Bloch-De Dominics theorem)とは、量子多体系における熱平均で定義された多点相関関数を、2点相関関数の組み合わせ和に分解する定理。場の量子論の真空期待値に関するウィックの定理に対し、有限温度の系での類似版に相当しており、ウィックの定理とも呼ばれる。物理学者 松原武生によって、温度グリーン関数の理論展開ともに導入されたT.

新しい!!: 対称群とブロッホ=ドミニシスの定理 · 続きを見る »

パフィアン

数学、特に線型代数において、パフィアン(ぱふぃあん、Pfaffian)とは、交代行列に対して定義される斉次多項式。交代行列の行列式は、パフィアンの2乗で表されるとともに、パフィアンにおいても行列式における関係式と類似の関係式が成り立つ。表現論や組み合せ論において応用されるほか、数理物理においては、可積分系の方程式のソリトン解の表示や可解格子の1種であるダイマー模型の分配関数の計算等に応用されるP.

新しい!!: 対称群とパフィアン · 続きを見る »

ピーターセングラフ

辺の交差が2のピーターセングラフ ピーターセングラフは単位距離グラフである。平面に各辺の長さが単位距離のグラフとして描ける。 対称になるが、一番上の図などは5回対称である。 ピーターセングラフ(英: Petersen graph)とは、10個の頂点と15個の辺からなる無向グラフである。グラフ理論の様々な問題の例、あるいは反例としてよく使われる。1898年、ジュリウス・ピーターセンが3色辺彩色できない最小のブリッジのない3-正則グラフとして考案した。そのため、ピーターセングラフと呼ばれているが、実際には1886年に既に考案されていた。.

新しい!!: 対称群とピーターセングラフ · 続きを見る »

ディンキン図形

という数学の分野において、ディンキン図形(ディンキンずけい、Dynkin diagram)とは、二重あるいは三重の辺(二重あるいは三重の線で描かれる)を持ち得るの一種であり、 にちなんで名づけられた。多重辺は制約条件により有向である。 ディンキン図形は代数閉体上の半単純リー環を分類する手段として主に興味を持たれている。これはワイル群を生じる、すなわち(すべてではないが)多くのを生じる。ディンキン図形は他の文脈においても現れる。 「ディンキン図形」という用語には曖昧さがある。ある場合にはディンキン図形は有向であると仮定され、この場合それらはルート系や半単純リー環に対応するが、他の場合には有向でないと仮定され、この場合ワイル群に対応する;有向図形, は同じ無向図形を生じ、これは と呼ばれる。この記事では、「ディンキン図形」は「向き付けられた」ディンキン図形を意味し、「向き付けられていない」ディンキン図形は明示的にそう呼ぶ。 Image:Finite Dynkin diagrams.svg|有限ディンキン図形 Image:Affine Dynkin diagrams.png|アファイン(拡大)ディンキン図形.

新しい!!: 対称群とディンキン図形 · 続きを見る »

ホイン函数

数学の分野における局所ホイン函数(ホインかんすう、)H⁢ℓ(a,q;α,β,γ,δ;z) とは、正則かつ特異点 z.

新しい!!: 対称群とホイン函数 · 続きを見る »

アルティンのL-函数

アルティンの ''L''-函数 (Artin L-function) は、代数体の有限次拡大のガロア群 G の線型表現 ρ に付随するディリクレ級数である。1923年にエミール・アルティンにより、彼の類体論の研究において導入されたが、以下に述べるアルティン予想という基本的な性質に関する予想は未だに証明されていない。このアルティン予想は非可換類体論の枠組みの中で解決可能であると考えられている。.

新しい!!: 対称群とアルティンのL-函数 · 続きを見る »

アーベル多様体

数学において、特に代数幾何学や複素解析や数論では、アーベル多様体(abelian variety)は、射影代数多様体であり、また正則函数(regular function)により定義することのできる群法則を持つ代数群でもある代数多様体を言う。アーベル多様体は、代数幾何の最も研究されている対象であり、同時に代数幾何学や数論やそれ以外の他の分野の研究の不可欠な道具である。 アーベル多様体は、任意の体に係数を持つ方程式により定義することができる。従って、多様体はその体の上で定義されると言う。歴史的には、最初研究されたアーベル多様体は複素数体上で定義された多様体であった。そのようなアーベル多様体はまさに複素射影空間へ埋め込むことができ複素トーラスであることが判明している。代数体上に定義されたアーベル多様体は、特別であり、数論の観点から重要である。環の局所化のテクニックは、数体上に定義されたアーベル多様体から有限体上や様々な局所体上に定義されたアーベル多様体を自然に導く。 アーベル多様体は代数多様体のヤコビ多様体(ピカール多様体のゼロ点の連結成分として)自然に現れてくる。アーベル多様体の群法則は必然的に可換となり、多様体は非特異となる。楕円曲線のアーベル多様体は次元が 1 である。アーベル多様体は小平次元が 0 である。.

新しい!!: 対称群とアーベル多様体 · 続きを見る »

エミー・ネーター

アマーリエ・エミー・ネーター (Amalie Emmy Noether,; 1882年3月23日 - 1935年4月14日) はユダヤ系ドイツ人数学者であり、抽象代数学と理論物理学への絶大な貢献で有名である。ネーターは、パヴェル・アレクサンドロフ (Pavel Alexandrov)、アルベルト・アインシュタイン (Albert Einstein)、ジャン・ディュドネ (Jean Dieudonné)、ヘルマン・ヴァイル (Hermann Weyl)、ノーバート・ウィーナー (Norbert Wiener) によって、数学の歴史において最も重要な女性と評されている。彼女の時代の先導的数学者の一人として、彼女は環、体、多元環の理論を発展させた。物理学では、ネーターの定理は対称性と保存則の間の関係を説明する。 ネーターはエルランゲンのフランケン地方の町のユダヤの家系に生まれた。父は数学者のである。彼女はもともと、必要な試験を通った後フランス語と英語を教える予定だったが、そうしないで数学を彼女の父が講義しているエルランゲン大学で学んだ。 (Paul Gordan) の指導の下1907年に学位論文を完成させた後、彼女は7年間無給でエルランゲンの数学研究所で働いた。当時女性は大学の職から大きく遮断されていた。1915年、彼女はダフィット・ヒルベルト (David Hilbert) とフェリックス・クライン (Felix Klein) によってゲッチンゲン大学数学科、世界規模で有名な数学研究の中心、に招かれた。しかしながら、哲学的な教授陣は反対し、彼女は4年間をヒルベルトの名の下での講義に費やした。彼女の (大学教授資格試験)が1919年に承認され、彼女は Privatdozent (私講師)の地位を得ることができた。 ネーターは1933年までゲッチンゲン数学科の主導的一員だった。彼女の生徒は "Noether boys" と呼ばれることもあった。1924年、オランダ人数学者 は彼女の仲間に入り、すぐにネーターのアイデアの主導的解説者になった。彼女の仕事は彼の影響の大きい1931年の教科書 (現代代数学)の第二巻の基礎であった。1932年のチューリッヒでの国際数学者会議での彼女の plenary address (全員参加の講演)の時までには彼女の代数的な洞察力は世界中で認められていた。翌年、ドイツのナチ政府はユダヤ人を大学の職から解雇し、ネーターはアメリカに移ってペンシルヴァニアので職を得た。1935年、彼女は卵巣嚢腫の手術を受け、回復の兆しにもかかわらず、4日後53歳で亡くなった。 ネーターの数学的研究は3つの「時代」に分けられている。第一の時代 (1908–19)、彼女はと数体の理論に貢献した。変分法における微分不変量に関する彼女の仕事、ネーターの定理は、「現代物理学の発展を先導したこれまでに証明された最も重要な数学な定理の1つ」と呼ばれてきた。第二の時代 (1920–26)、彼女は「代数学の顔を変えた」仕事を始めた。彼女の高尚な論文 Idealtheorie in Ringbereichen (環のイデアル論, 1921) においてネーターは可換環のイデアルの理論を広範な応用を持つ道具へと発展させた。彼女は昇鎖条件を手際よく使った。それを満たす対象は彼女に敬意を表してと呼ばれる。第三の時代 (1927–35)、彼女は非可換代数と超複素数についての研究を出版し、群の表現論を加群とイデアルの理論と統合した。ネーターは自身の出版物に加え、自分の考えに惜しみなく、他の数学者によって出版されたいろいろな研究の功績が、代数的位相幾何学のような彼女の研究とはかけ離れた分野においてさえ、認められている。.

新しい!!: 対称群とエミー・ネーター · 続きを見る »

エディントンのイプシロン

ディントンのイプシロンは、数学で用いられる記号。交代記号、レヴィ.

新しい!!: 対称群とエディントンのイプシロン · 続きを見る »

エニオン

ニオン (anyon) は、二次元の系においてのみ現れる粒子である。これは、フェルミ粒子およびボース粒子の概念を一般化したものである。.

新しい!!: 対称群とエニオン · 続きを見る »

カードのシャッフル

ードのシャッフルとはトランプなどのカードの順番をかき混ぜようとする操作を言う。そこから派生し、算数の文章題の題材として取り上げられることがある。本項目ではそのような、題材としてのシャッフルについて取り扱う。.

新しい!!: 対称群とカードのシャッフル · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 対称群とガロア理論 · 続きを見る »

ガロア群

ア群(英:Galois Group)とは、代数方程式または体の拡大から定義される群のことである。発見者であるフランスの数学者エヴァリスト・ガロアから命名された。これらの群を用い方程式などの数学的対象について研究する分野をガロア理論と呼ぶ。.

新しい!!: 対称群とガロア群 · 続きを見る »

キュリーの原理

ュリーの原理(-げんり:Curie's principle または Curie dissymmetry principle)とは、線形な物理学的現象において、原因となる事象が持っていた空間対称性は、それによる結果にも現れなければならないという原理である。逆に言えば、結果に非対称性があれば、それは原因に由来するものでなければならない。 ピエール・キュリーが1894年に結晶に関して述べたもので、物理現象の結果に現れる対称性は、結晶構造と外部からの影響(原因)とに共通の対称性であるというものである。 わかりやすい例を示すと、無重力状態でよく混ぜた砂(砂粒の密度は不均一とする)は高い対称性を持つ(等方的)。ここに重力と等方的な外力が加わると、重力方向の非対称性が現れ、砂粒はその密度に従って分離する。この原理は非線形現象では必ずしも成り立たないことが知られている。 のちにプリゴジン(1947年)が非平衡(線形)熱力学の観点から次のように解釈し、キュリー・プリゴジンの原理とも呼ばれる。 熱力学的な力(原因)と流れ(結果)の間には一般に線形関係が成り立つ。これらの力と流れはテンソル(スカラー、ベクトルも含む)で表現され、例えば一般的な化学反応ならばスカラー(0階テンソル)、拡散・電気・熱などの流れならばベクトル(1階テンソル)、粘性ならば2階テンソルで表される。一般には別種の力・流れの間にも結合(線形関係)が生じる(例えばペルティエ効果、ゼーベック効果など)。しかし空間に関して偶数階テンソルは対称、奇数階テンソルは反対称(空間の反転によりマイナスとなる)であるから、等方的な系を考えると対称テンソルと反対称テンソルの間には線形関係は成り立たない。ゆえに2種類の現象の間に結合が成り立つためには、それらのテンソル階数の差は偶数でなければならない。 ただし非等方的な系(界面や膜などを含む)ではこの限りでなく、細胞膜で膜輸送とATPの分解・合成反応とが共役するなどがその例である。.

新しい!!: 対称群とキュリーの原理 · 続きを見る »

クリフォード代数

数学において、クリフォード代数 (Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (orthogonal Clifford algebra) は、リーマンクリフォード代数 (Riemannian Clifford algebra) とも呼ばれる。.

新しい!!: 対称群とクリフォード代数 · 続きを見る »

クルル・シュミットの定理

数学において、クルル・シュミットの定理(Krull-Schmidt theorem)とは、加群や群の直既約分解の一意性に関する定理である。「クルル・シュミットの定理」の他にも「クルル・シュミット・東屋の定理」、「クルル・レマク・シュミットの定理」、「ウェダーバーン・レマク・クルル・シュミットの定理」とも呼ばれる。これらの数学者の貢献に関する歴史についてはとを参照のこと。.

新しい!!: 対称群とクルル・シュミットの定理 · 続きを見る »

クロネッカーのデルタ

ネッカーのデルタ()とは、集合 T(多くは自然数の部分集合)の元 i, j に対して によって定義される二変数関数 δij: T×T → のことをいう。つまり、T×T の対角成分の特性関数のことである。名称は、19世紀のドイツの数学者レオポルト・クロネッカーに因む。 アイバーソンの記法を用いると と書ける。 単純な記号だが、色々な場面で有用である。例えば、単位行列は (δij) と書けたり、n 次元直交座標の基底ベクトルの内積は、(ei, ej).

新しい!!: 対称群とクロネッカーのデルタ · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: 対称群とゲージ理論 · 続きを見る »

コーシーの定理 (群論)

群論において、コーシーの定理(コーシーのていり; Cauchy's theorem)とは次のような定理である。.

新しい!!: 対称群とコーシーの定理 (群論) · 続きを見る »

コーシー・ビネの公式

代数学におけるコーシー・ビネの公式 (こーしー・びねのこうしき、Cauchy-Binet formula)、あるいは、コーシー・ビネの定理、コーシー・ビネの展開とは、および オーギュスタン=ルイ・コーシーに由来する恒等式で、2つの行列の積から作られる正方行列の行列式を、元の行列から取り出せる最大の小行列式の積の和で表せるというものであり 、行列の要素は実数や複素数だけでなく可換環としても成立する。.

新しい!!: 対称群とコーシー・ビネの公式 · 続きを見る »

コクセター群

数学においてコクセター群(コクセターぐん、Coxeter group)とは鏡映変換で表示できる抽象群のことである。ハロルド・スコット・マクドナルド・コクセターに因んで名づけられた。有限コクセター群は何らかのユークリッド鏡映群(たとえば一般次元正多胞体の対称変換群など)になっている。もちろん、すべてのコクセター群が有限群とは限らないし、すべてのコクセター群をユークリッド的な鏡映や対称変換として記述できるわけでもない。コクセター群は鏡映群の抽象化として導入され、有限コクセター群の分類は完了している 。 コクセター群は数学のいくつもの分野に現れる。一般次元正多胞体の対称変換群や単純リー代数のワイル群は有限コクセター群の例であり、ユークリッド平面や双曲平面の正則三角形分割 (regular tessellation) に対応する三角群や無限次元カッツ-ムーディ代数のワイル群は無限コクセター群の例である。 コクセター群に関する標準的な文献としては や などがある。.

新しい!!: 対称群とコクセター群 · 続きを見る »

シューア多項式

数学において、シューア多項式(- たこうしき、英:Schur Polynomial)とは、自然数の分割でパラメトライズされたあるn変数対称多項式のことをいう。イサイ・シューアにちなんで名付けられたこの対称多項式は、基本対称多項式や完全対称多項式の一般化である。 表現論において、シューア多項式は、一般線型群の既約表現の指標である。シューア多項式は、すべての対称多項式からなる空間の基底となっている。2つのシューア多項式の積は、シューア多項式の非負整数係数一次結合に展開できる。この係数は、リトルウッド・リチャードソン則によって組合せ論的に記述される。さらに一般に2つの分割に対して定義される歪シューア多項式もシューア多項式と似た性質を持つことが知られている。.

新しい!!: 対称群とシューア多項式 · 続きを見る »

シローの定理

数学、とくに有限群論において、シローの定理 (Sylow theorems) は、ノルウェーの数学者ルートヴィヒ・シロー (Ludwig Sylow) (1872) にちなんで名づけられている定理の集まりであり、与えられた有限群がもつ固定された位数の部分群の個数についての詳細な情報を与える。シローの定理は有限群論の基本的な部分をなし、有限単純群の分類における非常に重要な応用を持つ。 素数 p に対し、群 G のシロー p-部分群(あるいは p-シロー部分群)とは、G の極大 p-部分群である、つまり、''p''-群である(任意の元の位数が p の冪である)であるような G の部分群であって、G の他のどんな p-部分群の真部分群でないようなものである。与えられた素数 p に対するすべてのシロー p 部分群の集合を Sylp(G) と書くことがある。 シローの定理はラグランジュの定理の部分的な逆を主張する。ラグランジュの定理は任意の有限群 G に対して G のすべての部分群の位数(元の個数)は G の位数を割り切るというものであり、シローの定理は有限群 G の位数の任意の素因数 p に対して G のシロー p 部分群が存在するというものである。有限群 G のシロー p 部分群の位数は、n を G の位数における p の重複度として、pn であり、また位数 pn の任意の部分群は G のシロー p 部分群である。(与えられた素数 p に対して)群のシロー p-部分群は互いに共役である。与えられた素数 p に対して群のシロー p-部分群の個数は mod p で 1 と合同である。.

新しい!!: 対称群とシローの定理 · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 対称群とスピン角運動量 · 続きを見る »

ゼロの偶奇性

は偶数である。このことを数学的に証明することは簡単であり、それを理解することも容易である。ゼロが偶数であることを証明するもっとも簡単な方法は、それが「偶数」の定義(2の倍数である整数)に当てはまることを確認することである。すなわちである。結果的に、ゼロは偶数の特徴であるような性質をすべて持っている。例えば、0は2で割りきれる。0の両隣は奇数である、0はある整数(0)とそれ自身との和である。0要素の集合(空集合)は、二つの等しい集合に分割できる、等々。ゼロは、他の偶数が満たすべきパターンにもまた合致している。例えば、偶数-偶数=偶数のような算術における規則は、0が偶数であることを要求する。 しかしながら、一般社会において、ゼロの偶奇性を認識することは、他の整数の偶奇性に比較して困難が伴い、混乱の元になるようだ。ある研究によれば、小学校の生徒たちは半数程度がゼロが偶数であることを正しく認識できなかった(後述)。また、数学専攻の学生や数学の教師でさえ、0が偶数であることに対して、しばしば誤った認識を持つ(後述)。反応時間試験において、大部分の人々は、0が偶数と認識するのに要する時間は、2,4,6,8などより明らかに遅かった。 本記事では、このようにゼロの偶奇性に対する一般的な認識に関して研究された、あるいは発生した事象を中心に解説する。.

新しい!!: 対称群とゼロの偶奇性 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 対称群と写像 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 対称群と写像の合成 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 対称群と全単射 · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: 対称群と八元数 · 続きを見る »

共役類

数学、とくに群論において、任意の群は共役類(きょうやくるい、conjugacy class)に分割できる。同じ共役類の元は多くの性質を共有し、非アーベル群の共役類の研究はそれらの構造のたくさんの重要な特徴を明らかにする。.

新しい!!: 対称群と共役類 · 続きを見る »

回転 (ベクトル解析)

ベクトル解析における回転(かいてん、rotation, curl)(または )は、三次元ベクトル場の無限小回転を記述するベクトル演算子である。ベクトル場の各点において、ベクトル場の回転はベクトルとして表され、このベクトルの寄与(大きさと向き)によってその点での回転が特徴付けられる。 回転ベクトルの向きは回転軸に沿って右手系となる方にとり、回転ベクトルの大きさは回転の大きさとなる。例えば、与えられたベクトル場が、動いている流体の流速を表すものであるとき、その回転とはその流体の循環密度のことになる。回転場が 0 となるベクトル場はであると言う。場の回転はベクトル場に対する導函数に相当し、これに対応して微分積分学の基本定理に相当するのは、ベクトル場の回転場の面積分をそのベクトル場の境界曲線上での線積分と関係づけるストークスの定理(ストークス=ケルビンの定理)であると考えられる。 回転演算に相当する用語は curl, rotation の他に rotor や rotational などがあり、記法 に相当する記法は や などがある。前者の rot 系の用語・記法を用いる流儀はヨーロッパ諸国の系統に多く、ナブラや交叉積を用いる記法はそれ以外の系統で使われる傾向にある。 勾配や発散とは異なり、回転の概念を単純に高次元化することはできない。ただし、三次元に限らないある種の一般化は可能で、それはベクトル場の回転がまたベクトル場となるように幾何学的に定義される。これは三次元交叉積がそうであるのと同様の現象であり、このことは回転を "∇×" で表す記法にも表れている。 回転 "curl" の名を最初に提示したものはジェームズ・クラーク・マクスウェルで1871年のことである。.

新しい!!: 対称群と回転 (ベクトル解析) · 続きを見る »

四次方程式

四次方程式(よじほうていしき、quartic equation)とは、次数が 4 であるような代数方程式の事である。この項目では主に一変数の四次方程式を扱う。.

新しい!!: 対称群と四次方程式 · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 対称群と線型代数学 · 続きを見る »

総和

数学において、総和(そうわ、summation)とは与えられた数を総じて加えることである。.

新しい!!: 対称群と総和 · 続きを見る »

置換

置換(ちかん)はあるものを別のものに置き換えることである。.

新しい!!: 対称群と置換 · 続きを見る »

置換 (数学)

数学における置換(ちかん、permutation)の概念は、いくつか僅かに異なった意味で用いられるが、いずれも対象や値を「並べ替える」ことに関するものである。有り体に言えば、対象からなる集合の置換というのは、それらの対象に適当な順番を与えて並べることを言う。例えば、集合 の置換は、 の全部で六種類ある順序組である。単語のアナグラムは、単語を構成する文字列に対する置換として定められる。そういった意味での置換の研究は、一般には組合せ論に属する話題である。 相異なる n 個の対象の置換の総数は 通りであり、これは "n!" と書いて n の階乗と呼ばれる。 置換の概念は、多かれ少なかれ(あるいは陰に陽に)、数学のほとんどすべての領域に現れる。たとえばある有限集合上に異なる順序付けが考えられる場合に、単にそれらの順番を無視したいとか、無視した時にどれほどの配置が同一視されるかを知る必要があるなどの理由で、置換が行われることも多い。同様の理由で、置換は計算機科学におけるソートアルゴリズムの研究において生じる。 代数学、特に群論において、集合 S 上の置換は S から自身への全単射(つまり写像 で S の各元が像としてちょうど一つずつ現れるもの)として定義される。これは各元 s を対応する f(s) と入れ替えるという意味での S の並び替え (rearrangement) と関連する。このような置換の全体は対称群と呼ばれる群を成す。重要なことは、置換の合成が定義できること、つまり二つの並び替えを続けて行うと、それは全体として別の並べ替えになっているということである。S 上の置換は、S の元(あるいはそれを特定の記号によって置き換えたもの)を対象として、それらに対象の並び替えとして作用する。 初等組合せ論において、「」はともに n 元集合から k 個の元を取り出す方法として可能なものを数え上げる問題に関するもので、取り出す順番を勘案するのが k-順列、順番を無視するのが k-組合せである。k.

新しい!!: 対称群と置換 (数学) · 続きを見る »

置換の符号

数学において、少なくとも二元を含む有限集合 の置換( から への全単射)は大きく二つのクラス(偶置換と奇置換)に分けられる。 の任意の全順序を固定して、 の置換 の偶奇性(パリティ; 対性)は の転倒数、すなわち の元の対 で なるものの数、の偶奇性によって定義することができる。 置換 の符号 (sign) あるいは符号数 (signature) は、 が偶置換ならば, 奇置換ならば を割り当てる。置換の符号函数 は対称群 の交代指標と呼ばれる群指標を定義する。置換の符号に対する別の記法として、より一般のレヴィ–チヴィタ記号によって与えられる がある。これは から への全単射とは限らない任意の写像に対して定義され、全単射でない写像に対しては を割り当てる。 置換の符号は を の転倒数とすれば と明示的に書くことができる。 あるいは、置換の符号を置換の互換の積への分解によって定義することもできる。すなわち、置換 の互換の積への分解に現れる互換の数を とするとき、 とおくのである。置換のこのような互換の積への分解は一意ではないけれども、分解に現れる互換の総数の偶奇は置換ごとに一定しているので、この方法で置換の符号は矛盾なく定まるJacobson (2009), p. 50.

新しい!!: 対称群と置換の符号 · 続きを見る »

置換行列

数学の特に行列論における置換行列(ちかんぎょうれつ、permutation matrix)は、各行各列にちょうど一つだけ の要素を持ち、それ以外は全て となるような正方行列を言う。そのような -次正方行列の各々は、特定の 文字の置換を表現するもので、右または左からの行列の積によって列または行の置換を引き起こす。.

新しい!!: 対称群と置換行列 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 対称群と群 (数学) · 続きを見る »

群の中心

代数学における群 の核心または中心(ちゅうしん、center)この記法の Z はドイツ語で中心という意味の Zentrum に由来する。英語の center から のような記法が使われることも在るが、中心化群などと紛らわしい。 は の全ての元と可換となるような元全体の成す集合 である。 の中心は の部分群であり、定義からアーベル群(可換群)である。部分群としては、常に正規であり、特性的であるが必ずしも完全特性的 (fully characteristic) ではない。剰余群 は の内部自己同型群に同型である。 群 がアーベル群となることと となることとは同値である。これと正反対に、 が自明(つまり単位元のみからなる)ならば群 は中心を持たない (centerless) という。 中心に属する元はしばしば中心的 (central) であるといわれる。.

新しい!!: 対称群と群の中心 · 続きを見る »

群の圏

数学の一分野である圏論における群の圏(ぐんのけん、category of groups) は、群すべてからなる類を対象の類とし、群準同型を射とする圏である。作り方からこれはを成す。代数学における群論は、この圏の研究であるとみなすこともできる。.

新しい!!: 対称群と群の圏 · 続きを見る »

群の生成系

抽象代数学において、群の生成系、生成集合 (generating set of a group) は部分集合であって群のすべての元が(群演算のもとで)その部分集合の有限個の元とそれらの逆元の結合として表現できるものである。 言い換えると、S が群 G の部分集合であれば、、S で生成される部分群 (subgroup generated by S)、は S のすべての元を含む G の最小の部分群である、すなわち S のすべての元を含む部分群すべてに渡る共通部分である。同じことだが、<S> は S の元とそれらの逆元の有限積として書ける G のすべての元からなる部分群である。 G.

新しい!!: 対称群と群の生成系 · 続きを見る »

群の表現

数学において、群の表現(ぐんのひょうげん、group representation)とは、抽象的な群 の元 に対して具体的な線形空間 の正則な線形変換としての実現を与える準同型写像 のことである。線型空間 の基底を取ることにより、 をより具体的な正則行列として表すことができる。.

新しい!!: 対称群と群の表現 · 続きを見る »

群の表示

数学のとくに群論における、生成元と基本関係による群の表示(ぐんのひょうじ、presentation of group)とは、群をその生成元と生成元の間に成り立つ関係によって特定することを言う。一般に群はある自由群の全射準同型像なので必ず表示を持つが、それは一意的ではない。.

新しい!!: 対称群と群の表示 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: 対称群と群作用 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 対称群と群論 · 続きを見る »

群論の用語

群 (G, •) は集合 G で三つの公理を満たす G 上の(つまり G において閉じた)二項演算 "•" を組にしたものである。群の三公理とは.

新しい!!: 対称群と群論の用語 · 続きを見る »

結晶学

結晶学(けっしょうがく、英語:crystallography)は結晶の幾何学的な特徴や、光学的な性質、物理的な性質、化学的性質等を研究する学問である。今日では結晶学の物理的側面は固体物理学、化学的側面は結晶化学で扱われる。.

新しい!!: 対称群と結晶学 · 続きを見る »

組み紐 (数学)

ブレイドの例 数学における組み紐(くみひも)またはブレイド (braid) とは、垂れ下がる何本かの紐を適当に編んでできる図形を抽象化した数学的対象である。組み紐全体の集合が群を成すこと、幾何的対象の絡みを表す様子として次元がもっとも低いものであることなどから多様な分野に姿を現す。.

新しい!!: 対称群と組み紐 (数学) · 続きを見る »

組成列

組成列(そせいれつ、composition series)は、抽象代数学における概念の一つであり、与えられた群や加群といった代数的構造を、代数的により単純な構造の単純群や単純加群に分解する手法を与えるものである。組成列が存在するという条件は、有限個の単純(加)群の直積(直和)に書けるという条件よりも弱い。また、組成列が存在すれば、それはある意味で一意的である。.

新しい!!: 対称群と組成列 · 続きを見る »

環上の射影直線

数学における環上の射影直線(しゃえいちょくせん、projective line over a ring)は体上の射影直線を一般化するものである。.

新しい!!: 対称群と環上の射影直線 · 続きを見る »

特性部分群

数学、とくに群論という抽象代数学の分野において、特性部分群 (characteristic subgroup) はもとの群のすべての自己同型写像の下で不変な部分群である。共役は自己同型であるから、すべての特性部分群は正規部分群であるが、すべての正規部分群が特性部分群であるわけではない。特性部分群の例には、交換子部分群や群の中心がある。.

新しい!!: 対称群と特性部分群 · 続きを見る »

独立同分布

率論と統計において、確率変数の列やその他の系が独立同分布(どくりつどうぶんぷ)である(independent and identically distributed; IID)とは、それぞれの確率変数が他の確率変数と同じ確率分布を持ち、かつ、それぞれ互いに独立している場合をいう。独立同一分布ともいい、i.i.d., iidとも略記される。「独立同分布」という確率分布があるわけではない。 IIDという注記は統計において特に一般的であり、推計統計学の目的のために、しばしば標本中の観測値が効果的にIIDであると仮定される。観測値がIIDであるという前提(または要件)により、多くの統計的方法の基礎となる数学が単純化される傾向がある(およびを参照)。しかし、の実際の応用においては、この仮定が現実的である場合とそうでない場合がある。与えられたデータの集合上でこの仮定がどれほど現実的であるかをテストするために、を書いたりをすることで、自己相関を計算することができる。の一般化はしばしば十分であり、より容易に満たされる。 この仮定は、有限の分散を有するIIDな変数の和(または平均)の確率分布が正規分布に近づくという中心極限定理の古典的な形式において重要である。 IIDは確率変数の列を参照することに注意が必要である。独立同分布とは、列内の要素が、その要素の前の確率変数とは独立していることを意味する。このように、IIDの列はマルコフ過程とは異なる。マルコフ過程では、n 番目の確率変数の確率分布は、列内の前の確率変数の関数である(1次マルコフ過程の場合)。IIDの列は、標本空間またはイベント空間の全ての要素の確率が同じでなければならないということを意味しない。例えば、積み重ねられたサイコロを繰返し投げた場合、結果が偏っているにもかかわらず、IIDである列が生成される。.

新しい!!: 対称群と独立同分布 · 続きを見る »

直交群

数学において、 次元の直交群(ちょっこうぐん、orthogonal group)とは、 次元ユークリッド空間上のある固定された点を保つような距離を保つ変換全体からなる群であり、群の演算は変換の合成によって与える。 と表記する。同値な別の定義をすれば、直交群とは、元が の実直交行列であり、群の積が行列の積によって与えられるものをいう。直交行列とは、逆行列がもとの行列の転置と等しくなるような行列のことである。 直交行列の行列式は か である。 の重要な部分群である特殊直交群 は行列式が である直交行列からなる。この群は回転群ともよばれ、例えば次元 2 や 3 では、群の元が表す変換は(2次元における)点や(3次元における)直線のまわりの通常の回転である。低次元ではこれらの群の性質は幅広く研究されている。 用語「直交群」は上の定義を一般化して、体上のベクトル空間における非退化な対称双線型形式や二次形式基礎体の標数が でなければ、対称双線型形式と二次形式のどちらを使っても同値である。を保つような、可逆な線形作用素全体からなる群を表すことがある。特に、体 上の 次元ベクトル空間 上の双線型形式がドット積で与えられ、二次形式が二乗の和で与えられるとき、これに対応する直交群 は、群の元が 成分 直交行列で群の積を行列の積で定めるものである。これは一般線形群 の部分群であって、以下の形で与えられる。 ここで は の転置であり、 は単位行列である。.

新しい!!: 対称群と直交群 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: 対称群と表現論 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 対称群と行列 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 対称群と行列式 · 続きを見る »

行列群

数学において、行列群 (matrix group) はある体 K、通常は前もって固定される、上の可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n × n 行列を考えることができる。(行列のサイズは有限に制限される、なぜならば任意の群は任意の体上の無限行列の群として表現することができるからだ。)線型群 (linear group) は体 K 上の行列群に同型な抽象群である、言い換えれば、K 上の忠実な有限次元表現をadmitする。 任意の有限群は線型である、なぜならばそれはを使って置換行列によって実現できるからだ。の中で、線型群は面白く扱いやすいクラスをなす。線型でない群の例はすべての「十分大きい」群を含む。例えば、無限集合の置換からなる無限対称群。.

新しい!!: 対称群と行列群 · 続きを見る »

転倒 (数学)

計算機科学および離散数学における列の転倒(てんとう、inversion)は、その列の項の対であって、それらの項の成分が自然な順番から外れているようなものを言う。.

新しい!!: 対称群と転倒 (数学) · 続きを見る »

転置式暗号

転置式暗号(てんちしきあんごう、Transposition cipher)は平文の文字を並べ替えて暗号文を作成する暗号のことである。文字を別の文字、記号に置き換える換字式暗号とともに、古典的な暗号の1つであり、16世紀頃には換え字式、転置式という分類がされている。.

新しい!!: 対称群と転置式暗号 · 続きを見る »

輪積

数学の群論における輪積(りんせき、wreath product; リース積)は、半直積をもとにして定義される二つの群の特殊化された積である。置換群の分類においてリース積は重要な道具であり、またリース積から群の興味深い例がさまざまに構成される。 二つの群 A および H が与えられたとき、それら輪積には非制限輪積 (あるいは) と制限輪積 の二種類が考えられる。さらに ''H''-作用を持つ集合 Ω が与えられれば、 あるいは で表されるそれぞれの輪積の一般化が存在する。.

新しい!!: 対称群と輪積 · 続きを見る »

部分群の指数

数学、とくに群論において、群 G における部分群 H の指数 (index) は G における H の「相対的な大きさ」である。同じことだが、G を埋め尽くす H の「コピー」(剰余類) の個数である。例えば、H が G において指数 2 をもてば、直感的には G の元の「半分」は H の元である。H の G における指数は通常 |G: H| あるいは あるいは (G:H) で表記される。 正式には、H の G における指数は H の G における剰余類の個数として定義される。(H の G における左剰余類の個数はつねに右剰余類の個数と等しい。)例えば、Z を整数のなす加法群とし、2Z を偶数全体からなる Z の部分群とする。すると 2Z は Z において2つの剰余類(すなわち偶数全体と奇数全体)をもち、したがって 2Z の Z における指数は 2 である。一般化すると、任意の正の整数 n に対して である。 N が G の正規部分群であれば、G における N の指数はまた商群 G / N の位数にも等しい、なぜならばこれは G における N の剰余類の集合における群構造の言葉で定義されるからである。 G が無限であれば、部分群 H の指数は一般には 0 でない基数になる。上の例が示すように、それは有限 - つまり、正の整数 - かもしれない。 G と H が有限群であれば、H の G における指数は 2 つの群の位数の商に等しい: これはラグランジュの定理であり、この場合商は必ず正の整数である。.

新しい!!: 対称群と部分群の指数 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 対称群と自己同型 · 続きを見る »

自然数の分割

数学の各分野、特に数論および組合せ論 において、正の整数 n の分割(ぶんかつ、partition)あるいは整分割 (integer partition) とは、与えられた正整数 n を正整数の和として表す方法をいう。ただし、和の因子(summand; 被加数)の順番のみが異なる分割は同じ分割とみなされる(順序をも考慮する場合は、順序つき分割または、分割ではなく合成あるいは結合 (composition) と呼ばれる概念となる)。 例えば 4 の異なる分割は次の五通りである。 このとき、順序を考慮した合成 1 + 3 は分割としては 3 + 1 と同じであり、同様に合成としては異なる 1 + 2 + 1 および 1 + 1 + 2 は分割としては 2 + 1 + 1 と同じである。 分割の各因子は部分または成分 (part) などとも呼ばれる。また、各正整数 n に対して n の分割の総数を与える函数を p(n) であらわし、n の分割数 (partition function) と呼ぶ。これによれば上記は p(4).

新しい!!: 対称群と自然数の分割 · 続きを見る »

GNU Scientific Library

GNU Scientific Library (GSL) は、C言語で記述された科学技術計算関数のライブラリである。オープンソースであり、GNU General Public Licenseのもとで配布されている。 このプロジェクトは1996年にロスアラモス国立研究所のDr.

新しい!!: 対称群とGNU Scientific Library · 続きを見る »

Σ

Σ, σ, ς (シグマ、σίγμα / σῖγμα, sigma)は、ギリシア文字の一つ。伝統的な配列では 18 番目の文字。数価は200。現代ギリシア語では、語末形の "ς" を 6を表す "ϛ" (スティグマ)の代用として用いる。ラテンアルファベットの "S"、キリル文字の "С" は、この文字に由来する。.

新しい!!: 対称群とΣ · 続きを見る »

Τ

(タウ、希: /, 英: )はギリシア文字の一つで、伝統的な配列では、その第 19 番目に置かれる。音価は /t/。なお、ντ は語頭で/d/、語中で/nd/。ラテンアルファベットのT、キリル文字のТ、Ћはこの文字に由来する。.

新しい!!: 対称群とΤ · 続きを見る »

Magma (数式処理システム)

Magma は代数学、数論、代数幾何学、組合せ数学の問題を解くために開発された計算機代数ソフトウェアである。Magma という名前は代数的構造のマグマから取られている。Magma は Unix 系あるいは Linux で実行できる。または Windows でも利用することができる。.

新しい!!: 対称群とMagma (数式処理システム) · 続きを見る »

NHK高校講座 数学基礎

数学基礎(すうがくきそ)は、2003年4月から2013年3月までNHKで放送されていた『NHK高校講座』授業放送。.

新しい!!: 対称群とNHK高校講座 数学基礎 · 続きを見る »

NUMBERS 天才数学者の事件ファイル

『NUMBERS 天才数学者の事件ファイル』(ナンバーズ てんさいすうがくしゃのじけんファイル、原題Numb3rs、Numbers、公式にはNUMB3RS)は、アメリカ合衆国で2005年から2010年にかけて放送されていたテレビドラマである。.

新しい!!: 対称群とNUMBERS 天才数学者の事件ファイル · 続きを見る »

P-群

数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、p-primary group)あるいは、p-群(ピーぐん、p-group)もしくは準素群(じゅんそぐん、primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。.

新しい!!: 対称群とP-群 · 続きを見る »

Q-類似

-類似(きゅうるいじ、q-analog, -analogue)とは、理論に の極限で、元の理論に一致するように径数 を導入するような拡張のことをいう。-拡張(q-extension)などとも呼ばれる。.

新しい!!: 対称群とQ-類似 · 続きを見る »

S1

S1, S-1 (エスワン・エスイチ).

新しい!!: 対称群とS1 · 続きを見る »

S10

S10, S-10とは、以下の形容に用いられている。.

新しい!!: 対称群とS10 · 続きを見る »

S2

S2,S-2 (エスツー・エスニ).

新しい!!: 対称群とS2 · 続きを見る »

S3

S3.

新しい!!: 対称群とS3 · 続きを見る »

S4

S4, S 4, Š-4, S.4, S-4.

新しい!!: 対称群とS4 · 続きを見る »

S5

;S5.

新しい!!: 対称群とS5 · 続きを見る »

S7

S7.

新しい!!: 対称群とS7 · 続きを見る »

S8

S8.

新しい!!: 対称群とS8 · 続きを見る »

SN

SN, Sn, sn.

新しい!!: 対称群とSN · 続きを見る »

抽象添字記法

抽象添字記法(ちゅうしょうそえじきほう、abstract index notation)は、固有の基底の成分というよりも、タイプを表す添字を使ったテンソルやスピノルの数学的な記法である。添字は、数値を固定した基底に対して表すものではなく、占める位置を明確に示す記法となっている。この記法は、(Ricci calculus)と混乱することはない。この記法はロジャー・ペンローズ(Roger Penrose)により導入され、アインシュタインの縮約記法の形式的側面を扱う方法である。現代的な抽象的なテンソル記法では、この方法により、テンソル縮約(tensor contraction)や共変微分の難しさを補い、表現の意味している共変性を明確に保つことができる。 V をベクトル空間、V∗ をその双対とする。ランク 2 の共変テンソル \scriptstyle h\in V^*\otimes V^* を考えると、h は V 上の双線型形式と同一視することができる。言い換えると、これは V を 2つ引数とする函数で、「スロット」のペアとして表現することができる。 抽象記法は、単にラテン文字でのスロットのラベリングであり、スロットのラベルとしての意味以外の意味を持たない(つまり、数値的ではない)。 2つのテンソルの縮約は、添字ラベルの繰り返しにより表される。ひとつのラベルは反変(上にある添字は、V のテンソルに対応)であり、もうひとつのラベルは共変(下にある添字は、V* に対応する)である。たとえば、 は、最後の 2つのスロットの上のテンソル t.

新しい!!: 対称群と抽象添字記法 · 続きを見る »

正二十面体

正二十面体 正二十面体(せいにじゅうめんたい、regular icosahedron)は立体の名称の1つ。空間を正三角形20枚で囲んだ凸多面体。3次元空間で最大の面数を持つ正多面体である。.

新しい!!: 対称群と正二十面体 · 続きを見る »

数学ガール

『数学ガール』(すうがくガール)は、結城浩による、数学を題材にした小説の書名であり、その後のシリーズ名でもある。 が刊行され、その後、下記のシリーズ作品が刊行された。 2010年12月時点でシリーズ累計10万部。2014年3月には日本数学会から日本数学会賞出版賞が贈られた。 この記事では、第1作を『数学ガール』、第2作を『フェルマーの最終定理』、第3作を『ゲーデルの不完全性定理』、第4作を『乱択アルゴリズム』、第5作を『ガロア理論』、第6作を『ポアンカレ予想』と記述する。これらの副題と同名の数学の定理を表記する場合は、二重鉤括弧なしで記述する。.

新しい!!: 対称群と数学ガール · 続きを見る »

時間順序積

物理学において、時間順序積(じかんじゅんじょせき、time ordered product)もしくはT積(T- product)とは、量子力学や場の量子論で、演算子の積を時間の順序関係に応じて、並べ替えた積のこと。また、通常の積を時間順序に並べ替える作用素を時間順序作用素と呼ぶ。時間順序積は時間発展作用素の逐次積分による表現等に応用される。時間順序積の記法は物理学者フリーマン・ダイソンによって、場の理論におけるS行列の計算の際に導入された。.

新しい!!: 対称群と時間順序積 · 続きを見る »

5

五」の筆順 5(五、ご、う、いつ)は、自然数、また整数において、4 の次で 6 の前の数である。英語の序数詞では、5th、fifthとなる。ラテン語ではquinque(クゥィンクゥェ)。.

新しい!!: 対称群と5 · 続きを見る »

6

UNOのカード。6と9に下線がある。 「六」の筆順 6(六、ろく、りく、る、む)は、自然数または整数において、5 の次で 7 の前の数である。英語でsix(シックス)、ラテン語で sex(セクス)。なお、紙片や球体などに印字される場合、9 との混同を避けるために「6」のように下線を引いて区別されることがある。.

新しい!!: 対称群と6 · 続きを見る »

ここにリダイレクトされます:

互換 (数学)巡回置換置換群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »