ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

圏 (数学)

索引 圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

147 関係: 加群の圏加群の直和単集合同型写像同値関係多重線型代数多様体の圏始対象と終対象始代数完備束完全加法族完全性 (曖昧さ回避)対角関手導来圏小さい圏の圏射 (圏論)射影的対象射影極限層 (数学)局所コンパクト空間局所凸位相ベクトル空間不変量中可換マグマの圏帰納極限主束一様空間一様連続幾何学的トポロジー交換子部分群代数函数体代数的構造代数的整数論代数群位相同型位相的場の理論位相空間の圏位相線型空間の圏余等化子圏 (圏論)圏 (数学)圏同値圏論包含写像ミラー対称性 (弦理論)ノルム線型空間マイヤー・ヴィートリス完全系列マグマの圏ネーター像 (圏論)...モノイドモノイド圏ラングランズ双対リー群ワイルズによるフェルマーの最終定理の証明ヴェイユコホモロジーボレル集合ブール領域デカルト閉圏フロベニウス自己準同型ファジィ集合ベクトル空間ベクトル束到達不能基数制限 (数学)分解 (ホモロジー代数)アーベル圏アーベル群の圏カリー化カリー=ハワード同型対応カテゴリカテゴリ (曖昧さ回避)ガロア圏ガロア理論クライスリ圏クラス (集合論)クリフォード代数クルル・シュミットの定理ゲルファント=ナイマルクの定理コホモロジースマッシュ積全射全順序充満関手と忠実関手前加法圏前順序集合の圏図式 (圏論)空グラフ等質空間範疇 (数学)米田の補題線型写像群の圏群のコホモロジー群の直積群作用群論群論の用語群準同型結合多元環環の局所化環の圏環上の加群環論環準同型特性類直積順序随伴関手隣接代数 (順序理論)Ext函手鎖複体順序群順序集合順像関手表現論豊穣圏距離空間の圏部分対象部分圏関係の圏関手関手圏閉包 (位相空間論)自己準同型環自由積自然変換離散空間零射集合の圏連結和F代数Hom函手VAR束 (位相幾何学)束 (束論)森田同値極限極限 (圏論)次数付きベクトル空間測度保存力学系有限集合の圏数学における統一理論数学的対象普遍代数学普遍性01の分割 インデックスを展開 (97 もっと) »

加群の圏

数学の一分野である圏論において加群の圏(かぐんのけん、category of modules)Mod は、すべての加群を対象としすべての加群準同型を射とする圏である。.

新しい!!: 圏 (数学)と加群の圏 · 続きを見る »

加群の直和

抽象代数学における直和(ちょくわ、direct sum)は、いくつかの加群を一つにまとめて新しい大きな加群にする構成である。加群の直和は、与えられた加群を「不必要な」制約なしに部分加群として含む最小の加群であり、余積の例である。双対概念であると対照をなす。 この構成の最もよく知られた例はベクトル空間(体上の加群)やアーベル群(整数環 Z 上の加群)を考えるときに起こる。構成はバナッハ空間やヒルベルト空間をカバーするように拡張することもできる。.

新しい!!: 圏 (数学)と加群の直和 · 続きを見る »

単集合

数学における単集合(たんしゅうごう、singleton; 単元集合、単項集合、一元集合)あるいは単位集合()は、唯一の元からなる集合である。一つ組 (1-tuple) や単項列 (a sequence with one element) と言うこともできる。 例えば、 という集合は単集合である。.

新しい!!: 圏 (数学)と単集合 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 圏 (数学)と同型写像 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 圏 (数学)と同値関係 · 続きを見る »

多重線型代数

数学における多重線型代数(たじゅうせんけいだいすう、multilinear algebra)とは、線型空間における多重線型性 を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。 を –代数とするとき、自然数 に対し、 上で定義された 変数写像 はある変数以外の変数を固定して一変数の写像と見なしたときにK –線型写像を定めている。より一般に 上のベクトル空間 上の 変数写像についてもある変数以外の変数を固定して一変数写像と見なしたときに 線型写像になっているようなものを考えることができるが、このような写像は多重線型写像 とよばれる。多重線型写像は何らかの意味でベクトルの「積」を表していると考えられる。 多重線型性を捉える基本的な対象としてテンソル代数(てんそるだいすう、)、対称代数(たいしょうだいすう、)、外積代数(がいせきだいすう、)が挙げられる。テンソル代数におけるテンソル積によって、ベクトルの積として最も一般的なものが定式化される。また、対称積や外積によって一定の付加的な条件を満たすような積が捉えられる。.

新しい!!: 圏 (数学)と多重線型代数 · 続きを見る »

多様体の圏

数学の一分野である圏論において -級多様体の圏(たようたいのけん、category of manifolds) は、すべての -級可微分多様体を対象とし、すべての -級可微分写像(-回連続的微分可能写像を射とする圏である。二つの -級写像の合成はやはり -級となるから、確かにこれで圏が得られている。 しばしば特定の圏 に属する対象をモデルに持つ多様体( における多様体対象)のみを考えたいという場合が生じる。そのような限定された意味の多様体の成す圏は のように書き表す。同様に特定の空間 の上で定められる多様体の成す圏を と書く。 滑らかな多様体の圏 やの圏 も同様に考えられる。.

新しい!!: 圏 (数学)と多様体の圏 · 続きを見る »

始対象と終対象

数学の抽象的な分野である圏論において、圏 の始対象(したいしょう、initial object, coterminal object)とは、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。圏 の終対象(しゅうたいしょう、final object, terminal object)とは、始対象の双対概念であり、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。 始対象でも終対象でもあるような対象は零対象(れいたいしょう、ゼロたいしょう、zero object, null object)と呼ばれる。点付き圏 とは零対象を持つ圏を言う。.

新しい!!: 圏 (数学)と始対象と終対象 · 続きを見る »

始代数

数学において、始代数 (しだいすう、initial algebra) とは、与えられた自己関手 F に対する ''F''-代数の圏における始対象を言う。始代数の持つ始対象性 (initiality) は帰納や再帰といったものの一般の枠組みを与える。 始代数の圏論的双対概念として、''F''-余代数の圏の終対象は終余代数(しゅうよだいすう、final coalgebra)と呼ばれる。終余代数の終対象性 (finality) は余帰納や余再帰といった概念の一般な枠組みを与える。.

新しい!!: 圏 (数学)と始代数 · 続きを見る »

完備束

数学の一分野における完備束(complete lattice)とは部分集合が常に上限と下限を持つ半順序集合のことである。 完備束は束の重要な例で順序集合論及び普遍代数の研究対象であり、数学及び計算機科学に多くの応用を持つ。 には様々な異なる定義があるので注意を要する(例えば完備半順序 (CPO) は完備束とは異なる概念である)。特に重要な完備束のクラスとしてや (locale) がある。.

新しい!!: 圏 (数学)と完備束 · 続きを見る »

完全加法族

数学における完全加法族(かんぜんかほうぞく、completely additive class)、可算加法族(かさんかほうぞく、countably additive class)あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、σ-algebra)、σ-集合体(シグマしゅうごうたい、σ-field)接頭辞 "σ" は「可算加法的」("completely additive") であることを示すのにしばしば用いられる。また、完全加法族では可算加法性と可算乗法性が補集合を取る操作を通じて同値になるので区別されないが、(乗法族における)積の可算性が δ- を用いることによって表される場合がある(δ-乗法族)。例えば、σ-集合環と δ-集合環など。''G''δ-集合と''F''σ-集合の項も参照。は、主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である。.

新しい!!: 圏 (数学)と完全加法族 · 続きを見る »

完全性 (曖昧さ回避)

完全性.

新しい!!: 圏 (数学)と完全性 (曖昧さ回避) · 続きを見る »

対角関手

圏論において、積 a\times a が存在する任意の圏 \mathcal の任意の対象 a に対して、 を満たす対角射 (diagonal morphism) が存在する。ただし \pi_k は k 次成分への自然な射影射である。この射の存在は(同型を除いて)積を特徴づける普遍性の結果である。ここでの二項の積への制限は表記の簡単さのためである。対角射は同様に任意の積に対して存在する。集合の圏の対角射の像は、カルテジアン積の部分集合として、定義域上の関係、すなわち等式である。 に対して、対角射は対象 a の元 x 上のその作用によって単純に記述することができる。すなわち、\delta_a(x).

新しい!!: 圏 (数学)と対角関手 · 続きを見る »

導来圏

数学においてアーベル圏 \mathcal の導来圏(どうらいけん、Derived category、Catégorie dérivée) D(\mathcal) はホモロジー代数から構成されるもので、 \mathcal 上に定義された導来函手の理論を精密化するとともに、ある意味で単純化するべく導入された。その構成は基本的には次の様に進む:まず圏 D(\mathcal) の対象は \mathcal の双対鎖複体であり、次に2つのその様な双対鎖複体の間にチェイン写像が存在してコホモロジーを取った段階で同型を誘導する場合に同型であると考えるのである。このとき、導来函手は双対鎖複体に対して定義され、の考えを精密化したものとなる。これらの定義により、煩雑なを用いて(完全に忠実ではなく)記述されるよりほか無かった式は劇的に簡素化される。 導来圏の発展は、アレクサンドル・グロタンディークと彼の学生のにより1960年代初頭になされ、ホモロジー代数が長足の進歩を遂げた1950年代における爆発的な展開の一つの到達点であると現在ではみなされている。ヴェルディエによる理論の基本部分は博士論文に纏められたが、1996年になってようやくAstérisque(要約はずっと早くにに収録されていた)に出版された。その定式化には革新的な発想であるの概念が必要であり、その構成は環の局所化を一般化したに基づく。"導来"形式の展開への原動力となった欲求は、グロタンディークによるの理論のなんらかの意味での定式化を行うことであった。導来圏は以後、代数幾何学以外の領域に於いてさえ、たとえば、D-加群や超局所解析でも不可欠な概念となっている。さらに、近年は、ミラー対称性やD-ブレーンの定式化という物理学に近い領域でも、導来圏が重要な役割を果たすようになっている。.

新しい!!: 圏 (数学)と導来圏 · 続きを見る »

小さい圏の圏

数学の特に圏論における(小さい)圏の圏(ちいさいけんのけん、category of small categories) は、すべての小さい圏を対象とし、圏の間の函手を射とする圏である。実際には、 は自然変換を (2-射) とする (2-圏) を成すものと見なせる。 の始対象は対象も射も持たない空圏 であり、終対象はただ一つの対象とただ一つの射(唯一の対象上の恒等射)のみからなる圏 (自明圏あるいは終圏という)である。 小さい圏の圏 それ自身は大きい圏であり、それゆえ自身を対象として含むことはない。ラッセルの逆理(の圏版)を避けるには「すべての(小さいとは限らない)圏の圏」はあってはならないが、「すべての圏の擬圏」(quasi­category of categories) CATを考えることはできる(擬圏は大きい圏を対象にできるという意味で圏ではないとすれば、圏の擬圏は自身を対象に含まない)。.

新しい!!: 圏 (数学)と小さい圏の圏 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 圏 (数学)と射 (圏論) · 続きを見る »

射影的対象

圏論において,射影的対象(しゃえいてきたいしょう,projective object)の概念は射影的加群の概念を一般化する. 圏 \mathcal の対象 が射影的とは,hom関手 が全射を保つことをいう.つまり,任意の射 f\colon P\to X は任意の全射 を通して分解する. \mathcal をアーベル圏とする.この文脈では,対象 P\in\mathcal が射影的対象であるとは, が完全関手であることをいう.ただし \mathbf はアーベル群の圏である. 射影的対象の双対概念は単射的対象の概念である:アーベル圏 \mathcal の対象 が単射的であるとは,\mathcal から \mathbf への関手 \operatorname(-,Q) が完全であることをいう..

新しい!!: 圏 (数学)と射影的対象 · 続きを見る »

射影極限

数学における逆極限(ぎゃくきょくげん、inverse limit)あるいは射影極限(しゃえいきょくげん、projective limit)は、正確な言い方ではないが、いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。逆極限は任意の圏において考えることができる。.

新しい!!: 圏 (数学)と射影極限 · 続きを見る »

層 (数学)

数学における層(そう、sheaf, faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、)とよばれる。.

新しい!!: 圏 (数学)と層 (数学) · 続きを見る »

局所コンパクト空間

数学において、位相空間 が局所コンパクト(きょくしょコンパクト、)というのは、雑に言って、 の各点の近傍ではコンパクトであるという性質をもつことである。位相空間がコンパクトであるための条件は非常に厳しく、コンパクトな空間が数学において特殊な位置を占めているのに対して、数学で扱う重要な位相空間の多くが局所コンパクトである。特に局所コンパクトなハウスドルフ空間は数学の中で重要な位置を占める。.

新しい!!: 圏 (数学)と局所コンパクト空間 · 続きを見る »

局所凸位相ベクトル空間

関数解析学および関連する数学の分野において、局所凸位相ベクトル空間(きょくしょとついそうベクトルくうかん、)あるいは局所凸空間(locally convex space)は、ノルム空間を一般化する位相ベクトル空間(TVS)の例である。それらは、均衡かつ併呑な凸集合の平行移動によって位相が生成されるような位相ベクトル空間として定義される。または代わりに、それらは半ノルムの族を伴うベクトル空間として定義され、その族に関して位相を定義することが出来る。一般にこのような空間は必ずしもノルム化可能ではないが、零ベクトルに対する凸局所基の存在はハーン=バナッハの定理の成立を保証する上で十分に強く、その結果として連続線型汎函数に関する豊富な理論がもたらされた。 フレシェ空間は、距離化可能かつその距離に関して完備であるような局所凸空間である。それらは、ノルムに関する完備ベクトル空間であるようなバナッハ空間の一般化である。.

新しい!!: 圏 (数学)と局所凸位相ベクトル空間 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: 圏 (数学)と不変量 · 続きを見る »

中可換マグマの圏

数学における中可換圏(なかかかんけん、medial category)即ち中可換マグマの圏 は、中可換な二項演算を持つ集合(中可換マグマ)を対象とし、それらの演算に関する(普遍代数学でいうところの)準同型を射とする圏である。 圏 は直積を持ち、従って中可換なマグマ対象(圏の内部演算によって定まるマグマ構造)の概念が意味を持つ。結果として、圏 はその任意の対象を中可換対象として持ち、またそのことによって特徴づけられる。 集合を、右射影 を演算とする自明なマグマと見做すことで、包含函手 が定まる。 単射自己準同型はマグマの拡大の自己同型(自己準同型の定値列の余極限)に拡張することができる。.

新しい!!: 圏 (数学)と中可換マグマの圏 · 続きを見る »

帰納極限

数学における順極限(じゅんきょくげん)または直極限(ちょくきょくげん、direct limit)もしくは帰納極限(きのうきょくげん、inductive limit)は、「対象の向き付けられた族」の余極限である。本項ではまず群や加群などの代数系に対する帰納極限の定義から始めて、あらためて任意の圏において通用する一般的な定義を与える。.

新しい!!: 圏 (数学)と帰納極限 · 続きを見る »

主束

数学において、主束(しゅそく、principal bundle)は、枠束を抽象化した概念である。 ここで枠束(frame bundle)とは、ファイバー束であって、任意の一点上のファイバー(繊維)が、あるベクトル空間における並び順の付いた基底全体の集合からなるものである。 主束は、構造群と呼ばれるある与えられた群 G により、ファイバーが G の主等質空間(英:principal homogeneous space)(G が自由かつ推移的に作用する集合のこと。G-トルソ(英:G-torsor)ともいう)になるものとして特徴付けられる。 これは、一般枠束におけるベクトル空間の全基底に対する一般線型群の作用を一般化したものである。 さらに、主 G 束(しゅ G そく、principal G-bundle)とは、ファイバー束であって、全てのファイバーが位相群 G の群の作用により主等質空間になるものをいう。 主 G 束は、群 G が束の構造群にもなるという意味で、G 束である。 主束は、位相幾何学および微分幾何学で重要な応用を有する。 主束は物理においても、ゲージ理論の根本的枠組みの一部を構成するという応用を見出した。 構造群 G を有するすべてのファイバー束は、一意に主 G 束を決定し、この主束により元の束が再構成できるという意味で、主束は、ファイバー束の理論に統一的枠組みを与える。.

新しい!!: 圏 (数学)と主束 · 続きを見る »

一様空間

一様空間(いちようくうかん、uniform space)は数学の一分野である位相空間論の概念で、一様連続性、一様収束性、完備性、一様被覆といった性質の定式化が可能になる条件を抽象する事で得られたものである。 一様空間は距離空間と位相空間の中間の強さを持つ概念であり、距離空間は自然に一様空間とみなせ、一様空間は自然に位相空間とみなせる。また擬距離空間や位相群なども一様空間とみなせる。 一様空間は距離空間と位相群を一般化する概念であるので、解析学における議論の多くの基盤を与えるものとなっている。 一様構造と位相構造の概念的な違いは、一様空間においては点の近さや相対的な近さといったようなある種の概念が定式化できるというようなことにある。つまり、「点 x の点 a への近さは、点 y の点 bへの近さよりも近い」といったような考察は一様空間において意味を成すのである。対する一般の位相空間では、部分集合 A, B が与えられれば、「点 x が集合 A にどれほどでも近い(x が A の閉包に属する)」とか「集合 A は集合 B よりも小さい近傍である」といったようなことは言える。しかし点の近さの概念や相対的な近さといったようなものは、位相構造のみでは記述することができない。.

新しい!!: 圏 (数学)と一様空間 · 続きを見る »

一様連続

一様連続(いちようれんぞく、uniformly continuous)は数学における関数に対する概念で、通常の連続性の概念を強めたものである。大雑把に言って、関数の連続性とは引数 x の変化が小さいと関数値 f(x) の変化も小さい事を指すが、このとき f(x) の変化の度合いが x の変化の度合いにのみ依存し、x の値自身にはよらなければ f は一様連続であるという。 すなわち一様連続性とは、f の定義域において x と y が十分近いことを要求するだけで( x の値によらず)、f(x) と f(y) が近い値をとることを保証していることを言う。 定義より一様連続な関数は連続であるが、逆は一般には成り立たない。 しかし定義域が有界閉区間であれば、その区間上連続な関数は一様連続である事が知られている(ハイネ・カントールの定理)。 一様連続性の定義はユークリッド空間や、それを一般化した概念である距離空間において定義される。 さらに一般に一様空間上でも定義可能である。.

新しい!!: 圏 (数学)と一様連続 · 続きを見る »

幾何学的トポロジー

数学において、幾何学的トポロジー(geometric topology)は、多様体とそれらの間の写像、特に多様体から多様体への埋め込み(embedding)の研究をする。.

新しい!!: 圏 (数学)と幾何学的トポロジー · 続きを見る »

交換子部分群

数学、特に抽象代数学における群の交換子部分群(こうかんしぶぶんぐん、commutator subgroup)あるいは導来部分群(どうらいぶぶんぐん、derived subgroup)は、その群の交換子全体で生成される部分群である。 交換子部分群は、それによる商がアーベル群となるような正規部分群のうちで最小のものであるという点で重要である。すなわち、 がアーベル群となる必要十分条件は正規部分群 が交換子部分群を含むことである。ゆえにある意味で交換子部分群は、群がアーベル群からどれくらい離れているかを測るものということができる。つまり、交換子部分群が大きいほど、その群はアーベル群から遠くなる。.

新しい!!: 圏 (数学)と交換子部分群 · 続きを見る »

代数函数体

数学では、体 上の 変数の代数函数体 (algebraic function field)(単に、函数体とも言う)は、 上に超越次数 を持つ有限生成な体の拡大 である。同じことであるが、 上の 変数の代数函数体は、 上の 変数の有理函数の体 の有限拡大として定義できる。 Equivalently, an algebraic function field of n variables over k may be defined as a finite field extension of the field k(x1,...,xn) of rational functions in n variables over k.-->.

新しい!!: 圏 (数学)と代数函数体 · 続きを見る »

代数的構造

数学において代数的構造(だいすうてきこうぞう、algebraic structure)とは、集合に定まっている算法(演算ともいう)や作用によって決まる構造のことである。代数的構造の概念は、数学全体を少数の概念のみを用いて見通しよく記述するためにブルバキによって導入された。 また、代数的構造を持つ集合は代数系(だいすうけい、algebraic system)であるといわれる。すなわち、代数系というのは、集合 A とそこでの算法(演算の規則)の族 R の組 (A, R) のことを指す。逆に、具体的なさまざまな代数系から、それらが共通してもつ原理的な性質を抽出して抽象化・公理化したものが、代数的構造と呼ばれるのである。 なお、分野(あるいは人)によっては代数系そのもの、あるいは代数系のもつ算法族のことを代数的構造とよぶこともあるようである。 後者は、代数系の代数構造とも呼ばれる。 現代では、代数学とは代数系を研究する学問のことであると捉えられている。.

新しい!!: 圏 (数学)と代数的構造 · 続きを見る »

代数的整数論

代数的整数論(だいすうてきせいすうろん、algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は、例えば環において一意分解が成り立つかとか、イデアルの性質、体のガロワ群などであるが、ディオファントス方程式の解の存在のような、数論において極めて重要な問題を解決することができる。.

新しい!!: 圏 (数学)と代数的整数論 · 続きを見る »

代数群

代数幾何学において,代数群(だいすうぐん,algebraic group, あるいは群多様体,group variety)とは,代数多様体であるような群であって,積と逆元を取る演算がその多様体上の正則写像によって与えられるものである. 圏論のことばでは,代数群は代数多様体の圏におけるである..

新しい!!: 圏 (数学)と代数群 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 圏 (数学)と位相同型 · 続きを見る »

位相的場の理論

位相的場の理論(いそうてきばのりろん)もしくは位相場理論(いそうばりろん)あるいはは、を計算する場の量子論である。 TQFTは物理学者により開拓されたにもかかわらず、数学的にも興味を持たれていて、結び目理論や代数トポロジーの 4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している。サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている。 物性物理学では、位相的場の理論は、分数量子ホール効果や、凝縮状態や他の状態のような、の低エネルギー有効理論である。.

新しい!!: 圏 (数学)と位相的場の理論 · 続きを見る »

位相空間の圏

数学の一分野である圏論における位相空間の圏(いそうくうかんのけん、category of topological spaces) あるいは \mathcal\!\!op は、位相空間を対象とし、連続写像を射とする圏を言う。ただし、しばしば対象や射を特定のものに制限したり適当なものに取り換えたりするので注意が必要である(例えば、対象はしばしばと仮定する)。これが圏を成すことは、二つの連続写像の合成がふたたび連続となることによる。圏 およびを圏論の手法を用いて研究する分野を圏論的位相空間論 (categorical topology) と言う。 注意: 記号 を位相多様体と連続写像の圏の意味で用いる文献があるので注意が必要である。必要ならば や などと書けば混乱は避けられる。.

新しい!!: 圏 (数学)と位相空間の圏 · 続きを見る »

位相線型空間の圏

数学の一分野、圏論における位相線型空間の圏(いそうせんけいくうかんのけん、category of topological vector spaces)(あるいは などとも書く)は、すべての位相線型空間を対象とし、すべての連続線型写像を射とする圏である。これが圏を成すのは、二つの連続線型写像の合成がふたたび連続線型となることによる。 位相体 を一つ固定して、 上の位相線型空間が連続 -線型写像を射としてなす(部分)圏 を考えることもできる。.

新しい!!: 圏 (数学)と位相線型空間の圏 · 続きを見る »

余等化子

圏論における余等化子(よとうかし、coequalizer, coequaliser)は同値関係による商の、任意の圏における対象に対する一般化である。余等化子は等化子の双対となる圏論的構成である。.

新しい!!: 圏 (数学)と余等化子 · 続きを見る »

圏(けん).

新しい!!: 圏 (数学)と圏 · 続きを見る »

圏 (圏論)

記載なし。

新しい!!: 圏 (数学)と圏 (圏論) · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 圏 (数学)と圏 (数学) · 続きを見る »

圏同値

数学、とりわけ圏論において、圏同値(けんどうち、equivalence of categories)とはふたつの圏が「本質的には同じである」という関係のことをいう。 多くの分野で圏同値の例がある。 圏同値を示すことで、対象になっている数学的な構造の間に強い相関関係があることがわかる。 場合によっては、その構造は表面的には無関係に見えるので、圏同値は有用である; つまりある定理を異なる数学的構造の定理に「翻訳」できることがある。 もしある圏が別の圏の双対圏と圏同値ならば、ふたつの圏は双対同値と言い、圏双対について論じることができる。 圏同値は圏の間の「可逆な」関手から成る。 しかしながら代数的な設定の下における同型とは異なり、関手とその「逆関手」の合成が恒等写像である必要はない。 その代わりに各対象が合成の像と自然同型であればよい。 そのため、このことはふたつの関手が「同型を除いて逆関手」であると言われたりする。 実際にという概念もあり、こちらは本当に関手が逆関手であることを要求するが、圏同値の概念に比べると実用性を欠く。.

新しい!!: 圏 (数学)と圏同値 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 圏 (数学)と圏論 · 続きを見る »

包含写像

A の上位集合である。 数学における包含写像(ほうがんしゃぞう、)または標準単射 は、 を の部分集合とするとき、 の各元 を の元として扱う写像 のことを言う。写像の矢印の部分に「鉤付き矢印」 を用いることで が包含写像であることを意味することがある。 包含写像(およびそれに類するからの単射)はしばしば、自然な単射 とも呼ばれる。 二つの対象 と の間の任意の射 が与えられたとき、域 の中への包含写像射 が存在するならば、 の制限を射の合成 によってつくることができる。多くの例において、 の値域と呼ばれる余域への標準的包含射 も構成できる。.

新しい!!: 圏 (数学)と包含写像 · 続きを見る »

ミラー対称性 (弦理論)

数学や理論物理学において、ミラー対称性(mirror symmetry)はカラビ・ヤウ多様体と呼ばれる幾何学的な対象の間の関係であり、2つの カラビ・ヤウ多様体が幾何学的には全く異なっているにもかかわらず、弦理論の余剰次元としてそれらを扱うと等価となる対称性のことを言う。この場合、多様体は互いに「ミラー多様体」であると呼ばれる。 ミラー対称性はもともとは、物理学者によって発見された。数学者がミラー対称性に興味を持ち始めたのは1990年頃で、特に、(Philip Candelas)、ゼニア・デ・ラ・オッサ(Xenia de la Ossa)、パウル・グリーン(Paul Green)、リンダ・パークス(Linda Parks)らによって、ミラー対称性を数々の方程式の解の数を数える数学の分野である数え上げ幾何学で使うことができることが示されていた。実際、キャンデラスたちは、ミラー対称性を使いカラビ・ヤウ多様体の上の有理曲線を数えることができ、長きにわたり未解決であった問題を解明できることを示した(参照項目:ミラー対称性の応用)。元来のミラー対称性へのアプローチは、理論物理学者からの必ずしも数学的には厳密(mathematical rigor)ではないアイデアに基づいているにもかかわらず、数学者はミラー対称性予想のいくつかを数学的に厳密な証明に成功しつつある。 今日では、ミラー対称性は純粋数学の主要な研究テーマであり、数学者は物理学者の直感に基づくミラー対称性を数学的に深く理解しつつある。ミラー対称性は弦理論の計算を実行する際の基本的なツールでもある。ミラー対称性への主要なアプローチは、マキシム・コンツェビッチ(Maxim Kontsevich)のホモロジカルミラー対称性予想のプログラムやアンドリュー・ストロミンジャー(Andrew Strominger)、シン=トゥン・ヤウ(Shing-Tung Yau)、(Eric Zaslow)のSYZ予想を含んでいる。 Yau and Nadis 2010 Although the original approach to mirror symmetry was based on nonrigorous ideas from theoretical physics, mathematicians have gone on to rigorously prove some of the mathematical predictions of mirror symmetry.

新しい!!: 圏 (数学)とミラー対称性 (弦理論) · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: 圏 (数学)とノルム線型空間 · 続きを見る »

マイヤー・ヴィートリス完全系列

数学の特に代数的位相幾何学およびホモロジー論におけるマイヤー・ヴィートリス完全系列(マイヤーヴィートリスかんぜんけいれつ、Mayer–Vietoris sequence)は、位相空間が持つホモロジー群やコホモロジー群といった代数的位相不変量を計算するのに便利な道具の一つで、オーストリアの数学者ヴォルター・マイヤーとレオポルト・ヴィートリスによって示された。これは、位相空間を(コ)ホモロジーの計算がより容易にできるような部分空間の小片に分解するとき、得られる部分空間の(コ)ホモロジーの列ともとの空間のそれとの関係を述べたもので、それによりもとの空間のそれらを計算するという方法論を与える。マイヤー・ヴィートリス完全系列と呼ばれる完全系列は、全体空間の(コ)ホモロジー群、部分空間の(コ)ホモロジー群の直和、部分空間の交わりの(コ)ホモロジー群の三者から構成される自然な長完全列である。 マイヤー・ヴィートリス完全系列は、特異ホモロジー・特異コホモロジーを含む様々なホモロジー論およびコホモロジー論において成立する。一般に、アイレンバーグ-スティーンロッド公理系を満足する(コ)ホモロジー理論に対してマイヤー・ビートリスの完全系列が存在しており、それらに対する簡約版と相対版も考えることができる。大部分の位相空間は、その(コ)ホモロジーを定義から直接に計算することができないので、部分的な情報を得るためにマイヤー・ヴィートリス完全系列のような道具を利用する。位相幾何学に現れるような空間の多くは非常に簡単な小片の貼り合わせとして構成されるが、そういったものの中で、空間を被覆する二つの部分空間(およびそれらの交わり)がもとの空間より単純な(コ)ホモロジーを持つものを注意深く選べば、マイヤー・ヴィートリス完全系列によりもとの空間の(コ)ホモロジーが完全に演繹できるというのである。この観点で言えば、マイヤー・ヴィートリス完全系列は、基本群に対するの類似であり、実際一次元ホモロジーに対しては明確な関係がある。.

新しい!!: 圏 (数学)とマイヤー・ヴィートリス完全系列 · 続きを見る »

マグマの圏

数学の一分野、圏論におけるマグマの圏(マグマのけん、category of magmas) は、すべてのマグマ(一つの二項演算を備えた集合)を対象とし、(普遍代数学の意味での)演算の準同型(演算を保つ写像)を射とする圏を言う。 マグマの圏 は圏論的直積を持つから、直積を持つ任意の圏におけると同様に、(圏の内部演算に関する)マグマ対象 (magma object) の概念が意味を持つ。 包含函手 が、集合を自明なマグマ(二項演算は射影 で与える)と見て与えられる。 重要な性質の一つは、単射な自己射が(ちょうど、その自己射の成す定値列の余極限として)マグマ拡大の自己同型射に拡張できることである。 単集合 が の零対象で、かつ がであるから、 は点付きかつである。.

新しい!!: 圏 (数学)とマグマの圏 · 続きを見る »

ネーター

ネーター(Nöther, Noether)はザクセン、下ラインラント、プファルツに分布するユダヤ系ドイツ人の姓。nähter (MHG neter) "sew-er, (毛皮を)縫う人" に由来し、Näter, Nöter, Neter, Nether,, Näder, などの変種がある。.

新しい!!: 圏 (数学)とネーター · 続きを見る »

像 (圏論)

圏 と における射 f\colon X\to Y が与えられたとき, の像(ぞう,image)は単射 h\colon I\to Y であって以下の普遍性を満たすものである:.

新しい!!: 圏 (数学)と像 (圏論) · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 圏 (数学)とモノイド · 続きを見る »

モノイド圏

数学におけるモノイド圏(モノイドけん、monoidal category; モノイド的圏、モノイダル圏)あるいはテンソル圏(テンソルけん、tensor category)は、(自然同型の違いを除いて結合的な と、 について(再び自然同型の違いを除いて)左および右単位元となる対象 を備えた圏 である。この圏における自然同型は、関連する全ての図式を可換にすることを保証した(一貫性条件、整合条件)に従わなければならない。したがって、モノイド圏は抽象代数におけるモノイドの圏論的な緩い類似物である。 ベクトル空間、アーベル群、-加群、-多元環などの間に定義される通常のテンソル積は、それぞれの概念に付随する圏にモノイド構造を与える。ゆえにモノイド圏をこれら、あるいは他の例の一般化として見ることもできる。 圏論において、モノイド圏はモノイド対象の概念とそれに付随する作用を定義する。また、豊穣圏を定義する際にも使われる。 モノイド圏は圏論以外の分野において多数の応用を持つ。直観的線型論理の multiplicative fragment のモデルを定義し、物性物理学においてトポロジカル秩序相の数学的な基盤を与え、は場の量子論やひも理論に応用をもつ。.

新しい!!: 圏 (数学)とモノイド圏 · 続きを見る »

ラングランズ双対

数学の一分野である表現論では、簡約代数群 のラングランズ双対 (Langlands dual) (また、 の -群 とも言う)は、 の表現論を制御する群である。 を体 上の群とすると、 は の (absolute Galois group) の (complex Lie group) による拡大である。また、-群のヴェイユ形式と呼ばれる変形もあり、そこではガロア群はヴェイユ群に置き換わる。ラングランズ双対群も、-群と呼ばれることもある。ここの文字 は -函数の理論、特に保型形式の -函数の理論との関係を示している。 -群はロバート・ラングランズ (Robert Langlands) のラングランズ予想で、重要な要素として使われている。これを使い、 が大域体のとき、保型形式が群 の中で (functorial) を持つことを詳細に記述することができる。正確には、保型形式と表現が函手的であるという に対してではなく、 に対してである。このことは多くの現象で意味をもっている。例えば、ひとつの群から別のより大きな群への(保型)形式のリフティング(lifting)や、体の拡大の後にも同型であるような群は保型表現に関係しているという一般的な事実がある。 LG of a reductive algebraic group G (also called the L-group of G) is a group that controls the representation theory of G. If G is a group over a field k, LG is an extension of the absolute Galois group of k by a complex Lie group.

新しい!!: 圏 (数学)とラングランズ双対 · 続きを見る »

リー群

リー群(リーぐん、Lie group)は群構造を持つ可微分多様体で、その群構造と可微分構造とが両立するもののことである。ソフス・リーの無限小変換と連続群の研究に端を発するためこの名がある。.

新しい!!: 圏 (数学)とリー群 · 続きを見る »

ワイルズによるフェルマーの最終定理の証明

ワイルズによるフェルマーの最終定理の証明は、イギリスの数学者アンドリュー・ワイルズによる楕円曲線に関するモジュラリティ定理の特殊な場合の数学的証明である。と組み合わせることでフェルマーの最終定理の証明を与える。フェルマーの最終定理とモジュラリティ定理は双方ともに当時の知識だけで証明することは現実的にほぼ不可能だと考えられており、同時代の数学者の多くは証明することは難しいと考えていた。 ワイルズは1993年6月23日水曜日、「モジュラー形式、楕円曲線およびガロワ表現(Modular Forms, Elliptic Curves and Galois Representations.)」と題されたケンブリッジ大学の彼の講演にて最初に証明を発表した。しかし、1993年9月、この証明は誤りが含まれていることが判明した。1年後、1994年9月19日月曜日、ワイルズが 「(自身の)今までの職務においてもっとも重要な瞬間("the most important moment of working life")」と呼ぶアイデアを得た。彼はこれに関して「言い表し難いほど美しく…とてもシンプルでかつエレガント("so indescribably beautiful...

新しい!!: 圏 (数学)とワイルズによるフェルマーの最終定理の証明 · 続きを見る »

ヴェイユコホモロジー

代数幾何学において、ヴェイユコホモロジー (Weil cohomology) あるいは ヴェイユコホモロジー論 (Weil cohomology theory) とは、代数的サイクルとコホモロジー群の関係性についてのある公理系を満たすコホモロジーのことを言う。名前はアンドレ・ヴェイユ (André Weil) にちなむ。周モチーフを通してヴェィユコホモロジーが分解するという意味で、周モチーフの圏が普遍ヴェイユコホモロジー論である限りは、ヴェィユコホモロジー論がモチーフの理論で重要な役割を演じる。しかしながら、周モチーフの圏はアーベル圏ではないので、ヴェィユコホモロジー論をもたらさないことにも注意する必要がある。.

新しい!!: 圏 (数学)とヴェイユコホモロジー · 続きを見る »

ボレル集合

数学におけるボレル集合(ボレルしゅうごう、Borel set)は、位相空間の開集合系(あるいは閉集合系)から可算回の合併、交叉、差を取ることによって得られる集合の総称である。名称はエミール・ボレルに由来する。 位相空間 X に対し、X 上のボレル集合全体の成す族(ボレル集合族)は完全加法族(σ-集合体)を成し、ボレル集合体 あるいはボレル完全加法族 と呼ばれる。X 上のボレル集合体は、全ての開集合を含む最小の完全加法族である(全ての閉集合を含む最小の完全加法族でもある)。 ボレル集合は測度論において重要である。これは任意のボレル集合体上で定義された測度が空間内の開集合(あるいは閉集合)上での値のみから一意に定まることによる。ボレル集合体上で定義された測度はボレル測度と呼ばれる。ボレル集合およびそれに付随するボレル階層は、記述集合論においても基本的な役割を果たす。 文脈によっては、位相空間の(開集合ではなくて)コンパクト集合の生成するものとしてボレル集合を定めることもある。多くの素性の良い 空間、例えば任意の σ-コンパクトハウスドルフ空間などでは、この定義は先の(開集合を用いた)定義と同値になるが、そうでない病的な空間では違ってくる。.

新しい!!: 圏 (数学)とボレル集合 · 続きを見る »

ブール領域

ブール領域(ブールりょういき)またはブーリアン領域(英: Boolean domain)は、「偽」と「真」(真理値ないし真偽値)に対応する2つの元のみから成る集合である。 数学では、束の圏における始対象がブール領域である。記号としては 等を当てることもあるが、真偽値から離れた議論では や 等を当てることもある。ブール領域は、二値ブール代数としての構造を持つ。位相幾何学における類似のオブジェクトとして、2つの元からなる位相空間であるシェルピンスキー空間がある。 コンピュータプログラミング言語には、これに相当するブーリアン型があるものが多いが、C言語のように数値の0と1で代用している言語も多い。詳細はブーリアン型の記事を参照。.

新しい!!: 圏 (数学)とブール領域 · 続きを見る »

デカルト閉圏

圏論において、カテゴリーがデカルト閉(デカルトへい、cartesian closed)であるとは、大雑把に言えば任意の二つの対象の直積上で定義される射が直積因子の一方で定義される射と自然に同一視できることである。デカルト閉な圏はラムダ計算の自然な設定ができるという点で数理論理学およびプログラミングの理論において特に重要である。デカルト閉圏の概念はモノイド圏に一般化される(モノイド閉圏を参照)。.

新しい!!: 圏 (数学)とデカルト閉圏 · 続きを見る »

フロベニウス自己準同型

可換環論や体論では、フロベニウス自己準同型 (フロベニウス写像、Frobenius endomorphism, Frobenius map) (フェルディナント・ゲオルク・フロベニウスの名前にちなむ)は、有限体を含む重要なクラスである素数の標数 をもつ可換環の特別な自己準同型のことを言う。この自己準同型写像は、各元を 乗する。ある文脈においては、自己同型となるが、一般にこれは正しくない。.

新しい!!: 圏 (数学)とフロベニウス自己準同型 · 続きを見る »

ファジィ集合

ファジィ集合(ファジィしゅうごう、fuzzy set)は、自然言語で表されるような曖昧な対象を定量化し、通常の集合(集合の要素であるかないかが、「ある」か「ない」のどちらかであるような集合)と同じように演算など(集合代数)の対象とされる、集合である。 1965年にロトフィ・ザデーによって提唱された。集合に帰属する度合を表すメンバシップ関数により、曖昧な対象を定量化して扱う。 なお、日本語の「曖昧」という言葉は多義的で、「多義的」(2つ以上の意味にとれる)という意味があるが、ファジィはファズの形容詞形で、たとえば綿毛(冠毛)のような、境界がはっきりしないようす、周辺が不明瞭なことを意味し、多義的という意味はない。 一般に集合の体系には論理の体系が対応するが、ファジィ集合に対応するのはファジィ論理である。ファジィ集合やファジィ論理を利用した制御をファジィ制御といい、これらのファジィに関する理論をファジィ理論という。.

新しい!!: 圏 (数学)とファジィ集合 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 圏 (数学)とベクトル空間 · 続きを見る »

ベクトル束

数学において、ベクトル束(べくとるそく、vector bundle; ベクトルバンドル)は、ある空間 (例えば、 は位相空間、多様体、代数多様体等)により径数付けられたベクトル空間の族を作るという方法で与えられる幾何学的構成である。.

新しい!!: 圏 (数学)とベクトル束 · 続きを見る »

到達不能基数

集合論において、非可算基数κが弱到達不能基数(weakly inaccessible)であるとは、それが正則な極限基数であることを言い、強到達不能基数(strongly inaccessible)または単に到達不能基数(inaccessible)であるとは、κ未満の任意の基数λに対し、(2^\lambda を満たす正則基数であることを言う。 著者によっては非可算性を要求しないこともある(その場合 \aleph_0 は強到達不能基数)。弱到達不能基数は、強到達不能基数はおよびによって導入された。 "到達不能基数"という用語は曖昧である。1950年頃までは弱到達不能基数を指していたが、以後は普通は強到達不能基数を意味するからである。 定義より、強到達不能基数は同時に弱到達不能基数でもある。一般連続体仮説が成り立つ場合は、強到達不能基数であることの必要十分条件は弱到達不能であることになる。 \aleph_0 は正則な強極限基数である。選択公理を仮定すると、他の全ての無限基数は正則かまたは(弱)極限である。 しかしながら、その両方になれるもの、即ち弱到達不能基数は中でも大きいものに限られる。 順序数が弱到達不能基数であるための必要十分条件は、それが正則順序数であり、かつ、正則順序数の列の極限であることである (0,1, \aleph_0 は正則順序数だが正則順序数の列の極限ではない)。強極限かつ弱到達不能な基数は強到達不能である。 強到達不能基数の存在は、グロタンディーク宇宙が存在するという形で仮定される場合がある。この両者の間には深い繋がりがある。.

新しい!!: 圏 (数学)と到達不能基数 · 続きを見る »

制限 (数学)

数学における写像の制限(せいげん、)は、写像のもともとの定義域に対して、写像による対応関係を変えることなくそれよりも小さい集合を定義域に取り直す操作を言う。同様の概念はより一般に二項関係や多項関係などに対しても定義することができる。 写像 の定義域の部分集合 への制限として得られる写像を あるいは f で表す。.

新しい!!: 圏 (数学)と制限 (数学) · 続きを見る »

分解 (ホモロジー代数)

数学のホモロジー代数において,分解(ぶんかい,resolution)(あるいは左分解 (left resolution); 双対の余分解 (coresolution) あるいは右分解 (right resolution))は加群(あるいはより一般に,アーベル圏の対象)の完全列であり,加群あるいはこの圏の対象の構造を特徴づける不変量を定義するために用いられる.通常通り射が右向きのときは,列は(左)分解については左側に無限で,右分解については右側に無限であるとされる.しかしながら,有限分解 (finite resolution) は列の対象の有限個だけが零でない分解である.そのようなものは通常,(左分解について)左端の対象あるいは(右分解について)右端の対象が零対象である有限完全列によって表される. 一般に,列の対象はなんらかの性質 P(例えば自由である)を持つよう制限される.したがって P 分解が語られる.とくに,任意の加群は自由分解,射影分解,平坦分解をもつ.それらはそれぞれ自由加群,射影加群,平坦加群からなる左分解である.同様に任意の加群は単射分解をもつ.これは単射加群からなる右分解である..

新しい!!: 圏 (数学)と分解 (ホモロジー代数) · 続きを見る »

アーベル圏

アーベル圏(アーベルけん、Abelian category)とはアレクサンドル・グロタンディークによって考案された、ホモロジー代数が展開できるよういくつかの公理を満たす圏である。元来、層係数のコホモロジー理論(層コホモロジー)と定数係数のコホモロジー理論は、定義および構成方法がまったくといっていいほど異なるにもかかわらず、理論の構造は酷似していた。そのため両者を統一的な観点から記述するために考案された。しかしながら知られているすべてのコホモロジー理論がアーベル圏上で展開できるわけではない。.

新しい!!: 圏 (数学)とアーベル圏 · 続きを見る »

アーベル群の圏

数学の一分野である圏論におけるアーベル群の圏(あーべるぐんのけん、category of abelian groups) は、アーベル群を対象とし群準同型を射とする圏である。アーベル群の圏はアーベル圏の原型であり、実際に任意の小さいアーベル圏は に埋め込める。.

新しい!!: 圏 (数学)とアーベル群の圏 · 続きを見る »

カリー化

リー化 (currying, カリー化された.

新しい!!: 圏 (数学)とカリー化 · 続きを見る »

カリー=ハワード同型対応

リー=ハワード同型対応(カリー=ハワードどうけいたいおう、Curry-Howard correspondence)とは、プログラミング言語理論と証明論において、計算機プログラムと証明との間の直接的な対応関係のことである。「プログラム=証明」(proofs-as-programs)・「型=命題」(formulae-as-types)などとしても知られる。これはアメリカの数学者ハスケル・カリーと論理学者ウィリアム・アルヴィン・ハワードにより最初に発見された形式論理の体系とある種の計算の体系との構文論的なアナロジーを一般化した概念である。通常はこの論理と計算の関連性はカリーとハワードに帰属される。しかしながら、このアイデアはブラウワー、ハイティング、コルモゴロフらが定式化した直観主義論理の操作的解釈の一種と関係している。 At the very beginning, the Curry–Howard correspondence is.

新しい!!: 圏 (数学)とカリー=ハワード同型対応 · 続きを見る »

カテゴリ

テゴリ(Kategorie、Category、Catégorie)は、事柄の性質を区分する上でのもっとも基本的な分類のことである。カテゴリーとも表記する。語源はギリシア語の κατηγορια。漢訳語では範疇 (はんちゅう) であり、洪範九疇に由来する。.

新しい!!: 圏 (数学)とカテゴリ · 続きを見る »

カテゴリ (曖昧さ回避)

テゴリ、カテゴリー(category, Kategorie)は、「分類」に近い概念の語である。哲学では範疇と訳される。.

新しい!!: 圏 (数学)とカテゴリ (曖昧さ回避) · 続きを見る »

ガロア圏

ア圏(Galois category)とは古典ガロア理論が展開される、いくつかの公理を満たす圏である。元来古典ガロア理論および位相幾何学における基本群の理論の類似点が指摘されていたが、アレクサンドル・グロタンディークがガロア理論の成り立つ公理系を明言し、一般的なガロア圏の理論を構成した。古典ガロア理論および基本群の理論はこの理論の基本的な例になる。この理論はグロタンディークのガロア理論と呼ばれることもある。.

新しい!!: 圏 (数学)とガロア圏 · 続きを見る »

ガロア理論

ア理論(ガロアりろん、Galois theory)は、代数方程式や体の構造を "ガロア群" と呼ばれる群を用いて記述する理論。1830年代のエヴァリスト・ガロアによる代数方程式の冪根による可解性などの研究が由来。ガロアは当時、まだ確立されていなかった群や体の考えを方程式の研究に用いていた。 ガロア理論によれば、“ガロア拡大”と呼ばれる体の代数拡大について、拡大の自己同型群の閉部分群と、拡大の中間体との対応関係を記述することができる。.

新しい!!: 圏 (数学)とガロア理論 · 続きを見る »

クライスリ圏

圏論においてクライスリ圏(クライスリけん、Kleisli category)とは、『すべてのモナドは関手の随伴対から得られるか』というP.

新しい!!: 圏 (数学)とクライスリ圏 · 続きを見る »

クラス (集合論)

集合論及びその応用としての数学におけるクラスまたは類(るい、class)は、集合(または、しばしば別の数学的対象)の集まりで、それに属する全ての元が共通にもつ性質によって紛れなく定義されるものである。「クラス」の正確な定義は、議論の基礎となる文脈に依存する。例えば、ツエルメロ=フレンケル集合論 (ZF) ではクラスは厳密には存在しないが、他の集合論(たとえば、ノイマン=ベルナイス=ゲーデル集合論 (NBG))では、「クラス」の概念は公理化されている(NBG の例だと、別の量 (entity) の要素にならないような量としてクラスが定義される)。 (どのような定式化を選んだとしても)「全ての集合の集まり」はクラスである。(ZF では厳密な言い方ではないが)このクラスだが集合でないようなものは真のクラス (proper class) と呼ばれ、集合となるようなクラス(つまり集合)は小さいクラス (small class) とも呼ばれる。例えば、全ての順序数からなるクラスや全ての集合からなるクラスは、多くの形式体系において真のクラスである。 集合論以外の文脈では「クラス」を「集合」の同義語として使うこともある。この用法はクラスと集合が現代的な集合論の用語法に基づく区別をされていなかった時代からある。19世紀以前の多くの"クラス"に関する議論は集合のことを指していた、もしくはもっと曖昧な概念をさしていた。この意味でのクラスは「級」という訳語を当てることがある(たとえば滑らかさのクラスの C1-級など)。.

新しい!!: 圏 (数学)とクラス (集合論) · 続きを見る »

クリフォード代数

数学において、クリフォード代数 (Clifford algebra) は結合多元環の一種である。K-代数として、それらは実数、複素数、四元数、そしていくつかの他の超複素数系を一般化する。クリフォード代数の理論は二次形式と直交変換の理論と親密に関係がある。クリフォード代数は幾何学、理論物理学、デジタル画像処理を含む種々の分野において重要な応用を持つ。それらはイギリス人幾何学者にちなんで名づけられている。 最もよく知られたクリフォード代数、あるいは直交クリフォード代数 (orthogonal Clifford algebra) は、リーマンクリフォード代数 (Riemannian Clifford algebra) とも呼ばれる。.

新しい!!: 圏 (数学)とクリフォード代数 · 続きを見る »

クルル・シュミットの定理

数学において、クルル・シュミットの定理(Krull-Schmidt theorem)とは、加群や群の直既約分解の一意性に関する定理である。「クルル・シュミットの定理」の他にも「クルル・シュミット・東屋の定理」、「クルル・レマク・シュミットの定理」、「ウェダーバーン・レマク・クルル・シュミットの定理」とも呼ばれる。これらの数学者の貢献に関する歴史についてはとを参照のこと。.

新しい!!: 圏 (数学)とクルル・シュミットの定理 · 続きを見る »

ゲルファント=ナイマルクの定理

作用素環論において、ゲルファント=ナイマルクの定理(-のていり、Gelfand–Naimark theorem)とはC*-環の基本構造定理。可換なC*-環がある(局所)コンパクト・ハウスドルフ空間上の連続な複素数値関数のなす関数環と等距離*-同型となることを主張する。1943年にロシアの数学者イズライル・ゲルファントとによって、 導かれた I. M. Gelfand and M. A. Naimark, "," Mat.

新しい!!: 圏 (数学)とゲルファント=ナイマルクの定理 · 続きを見る »

コホモロジー

数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジーは、を、ホモロジーがもっているよりも洗練された代数的構造をもつ位相空間に割り当てる手法と見ることができる。コホモロジーはホモロジーの構成の代数的な双対から生じる。より抽象的でない言葉で言えば、基本的な意味でのコチェインは'量'をホモロジー論のチェインに割り当てる。 位相幾何学におけるその起源から、このアイデアは20世紀後半の数学において主要な手法となった。チェインについての位相的不変関係としてのホモロジーの最初の考えから、ホモロジーとコホモロジーの理論の応用の範囲は幾何学と抽象代数学に渡って拡がった。用語によって、多くの応用においてコホモロジー、反変理論、がホモロジーよりも自然であるという事実が隠されがちである。基本的なレベルではこれは幾何学的な状況において関数とを扱う。空間 X と Y、そして Y 上のある種の関数 F が与えられたとすると、任意の写像 f: X → Y に対して、f との合成は X 上の関数 F o f を引き起こす。コホモロジー群はまたしばしば自然な積、カップ積をもっており、環の構造を与える。この特徴のために、コホモロジーはホモロジーよりも強い不変量である。ホモロジーでは区別できないある種の代数的対象を区別できるのである。.

新しい!!: 圏 (数学)とコホモロジー · 続きを見る »

スマッシュ積

数学において,2つの基点付き空間(すなわち区別された基点を持つ位相空間) と のスマッシュ積(smash product)とは,積空間 において,すべての と に対して と と同一視した商空間である.スマッシュ積は通常 あるいは と書かれる.スマッシュ積は( と がともに等質でない限り)基点の取り方に依存する. と をそれぞれ の部分空間 と と考えることができる.これらの部分空間は一点, の基点で交わる.したがってこれらの部分空間の合併はウェッジ和 と同一視できる.するとスマッシュ積は商 である. スマッシュ積は代数的位相幾何学の一分野ホモトピー論において現れる.ホモトピー論では,すべての位相空間の圏とは異なる空間の圏でしばしば考える.これらの圏のうちスマッシュ積の定義をわずかに修正しなければならないものがある.例えば,2つののスマッシュ積は,定義において積位相ではなくCW複体の積を用いることで,CW複体である.同様の修正は他の圏においても必要である..

新しい!!: 圏 (数学)とスマッシュ積 · 続きを見る »

全射

数学において、写像が全射的(ぜんしゃてき、surjective, onto)であるとは、その終域となる集合の元は何れもその写像の像として得られることを言う。即ち、集合 から集合 への写像 について、 の各元 に対し となるような の元 が(一般には複数あってもよいが)対応させられるとき、写像 は全射 (surjection, onto mapping/function) であるという。全写(あるいは全写像)とも書く。 全射(および単射、双射)の語は20世紀フランスの数学結社ブルバキ(1935年以降『数学原論』シリーズを刊行している)により導入されたものである。接頭辞 sur- はフランス語で「上の」を意味し、写像の始域が終域全体をすっぽり覆い尽くすように写し込まれるイメージを反映したものになっている。sur, in, bi, jection いずれもラテン語源である。.

新しい!!: 圏 (数学)と全射 · 続きを見る »

全順序

数学における線型順序(せんけいじゅんじょ、linear order)、全順序(ぜんじゅんじょ、total order)または単純順序(たんじゅんじゅんじょ、simple order)は、推移的、反対称かつ完全な二項関係を言う。集合と全順序を組にしたものは、全順序集合 (totally ordered set), 線型順序集合 (linearly ordered set), 単純順序集合 (simply ordered set) あるいは鎖 (chain) と呼ばれる。 即ち、集合 X が関係 ≤ によって全順序付けられるとき、X の任意の元 a, b, c に対して、以下の条件 が満足される。 反対称性によって a < b でも b < a でもあるような不確定な状態は排除される。完全性を持つ関係は、その集合の任意の二元がその関係でであることを意味する。これはまた、元を直線に並べた図式によってその集合が表せるということでもあり、それは「線型」順序の名の由来である。また完全性から反射性 (a ≤ a) が出るから、全順序は半順序の公理を満たす。半順序は(完全性の代わりに反射性のみが課されるという意味で)全順序よりも弱い条件である。与えられた半順序を拡張して全順序をえることは、半順序のと呼ばれる。.

新しい!!: 圏 (数学)と全順序 · 続きを見る »

充満関手と忠実関手

圏論において,忠実関手(ちゅうじつかんしゅ,faithful functor)(resp.

新しい!!: 圏 (数学)と充満関手と忠実関手 · 続きを見る »

前加法圏

数学、特に圏論において、前加法圏とは可換群のなすモノイド圏で豊穣化した圏のことである。言い換えると、圏Cが前加法的であるとは、Cの各hom集合 Hom(A,B) が可換群の構造を持ち、さらに射の合成について双線形であることをいう。 可換群の圏 を Ab と書く記法に由来して、前加法圏を「Ab-圏」と呼ぶこともある。著者によっては前加法圏を加法圏と呼ぶこともあるが、ある特別な前加法圏(以下の#特別な場合を参照)のことを加法圏と呼ぶのが最近の傾向である。.

新しい!!: 圏 (数学)と前加法圏 · 続きを見る »

前順序集合の圏

数学の一分野、圏論における前順序集合の圏(ぜんじゅんじょしゅうごうのけん、category of preordered sets) は、すべてのを対象とし、単調写像を射とする圏である。二つの単調写像の合成はふたたび単調であり、また恒等写像は単調であるから、これは確かに圏を成していることがわかる。.

新しい!!: 圏 (数学)と前順序集合の圏 · 続きを見る »

図式 (圏論)

集合論における添え字付き集合族に類似した概念が、圏論における図式である。一番の違いは、圏論では射にも添え字を付ける必要があることである。添え字付き集合族は、ある固定した集合で添え字付けた集合の集まりのことであり、これは、固定した添え字集合から集合全体のクラスへの関数のことであると言っているのと同じである。これに対して、図式は、ある固定した圏で添え字付けた対象と射の集まりのことであり、固定した添え字圏からある圏への関手のことであると言うこともできる。 図式は極限と余極限の定義において中心となる概念であり、とも関連している。.

新しい!!: 圏 (数学)と図式 (圏論) · 続きを見る »

空グラフ

ラフ(英: null graph)は、数学のグラフ理論において、位数0のグラフ、または辺のないグラフ (edgeless graph) を意味する(後者は empty graph とも呼ぶ)。.

新しい!!: 圏 (数学)と空グラフ · 続きを見る »

等質空間

数学、とくにリー群、代数群、位相群の理論において、群 の等質空間(とうしつくうかん、homogeneous space)は、 が推移的に作用するような空でない多様体あるいは位相空間 である。 の元は の対称変換 (symmetry) と呼ばれる。特別な場合は、問題の が空間 の自己同型群であるときである――ここで「自己同型群」は、微分同相群、あるいはの意味である。この場合 が等質空間であるとは、直感的には が、等長写像(リジッド幾何学)、微分同相写像(微分幾何学)、あるいは同相写像(位相幾何学)の意味において、各点で局所的に同じに見えるということである。著者によっては の作用が忠実である(非単位元は非自明に作用する)ことを要求するが、本記事ではそうしない。したがって、 上のある「幾何学的構造」を保ち を単一の G-軌道にすると考えられるような の への群作用が存在する。.

新しい!!: 圏 (数学)と等質空間 · 続きを見る »

範疇 (数学)

数学において、範疇(はんちゅう)とは位相空間の部分集合を 2 通りに分類する方法のことである。カテゴリーと呼ぶことも多いが、同様にカテゴリーと呼ばれる圏とは全く異なるものである。.

新しい!!: 圏 (数学)と範疇 (数学) · 続きを見る »

米田の補題

米田の補題(よねだのほだい、Yoneda lemma)とは、小さなhom集合をもつ圏 C について、共変hom関手 hom(A, -): C → Set から集合値関手 F: C → Set への自然変換と、集合である対象 F(A) の要素との間に一対一対応が存在するという定理である。名称は米田信夫に因む。.

新しい!!: 圏 (数学)と米田の補題 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: 圏 (数学)と線型写像 · 続きを見る »

群の圏

数学の一分野である圏論における群の圏(ぐんのけん、category of groups) は、群すべてからなる類を対象の類とし、群準同型を射とする圏である。作り方からこれはを成す。代数学における群論は、この圏の研究であるとみなすこともできる。.

新しい!!: 圏 (数学)と群の圏 · 続きを見る »

群のコホモロジー

数学、とくにホモロジー代数学において、群のコホモロジー(group cohomology)とは代数的トポロジーに由来する技法であるコホモロジー論を使って群を研究するために使われる数学的な道具立てである。群の表現のように、群のコホモロジーは群 の G 加群への作用をみることで、その群の性質を明らかにする。 加群を の元が n 単体を表す位相空間のように扱うことで、コホモロジー群 などの位相的な性質が計算できる。コホモロジー群は群 や 加群 の構造に関する洞察を与える。群のコホモロジーは加群や空間への群作用の固定点や群作用に関する商加群や商空間を研究において一定の役割を果たす。群のコホモロジーは群論そのものへの応用はもちろん、抽象代数・ホモロジー代数・代数的トポロジー・代数的整数論などの分野でも用いられている。代数的トポロジーには、群のホモロジーと呼ばれる双対理論がある。 これらの代数的な概念は位相的な概念と密接に関連している。離散群 の群のコホモロジーは を基本群とする適当な空間——つまり対応する——の特異コホモロジーである。したがって のコホモロジーは円 の特異コホモロジーと思うことができ、同様に のコホモロジーは の特異コホモロジーと思うことができる。 群のコホモロジーについては非常に多くのこと——低次コホモロジーの解釈・関手性・群の変更——が知られている。群のコホモロジーに関する主題は1920年代に始まり、1940年代後半に発達し、現在でも活発に研究が続いている。.

新しい!!: 圏 (数学)と群のコホモロジー · 続きを見る »

群の直積

数学、特に群論において、与えられたいくつかの群の直積(ちょくせき、direct product)は、それらを正規部分群として含むような新しい群を作る構成法である。.

新しい!!: 圏 (数学)と群の直積 · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: 圏 (数学)と群作用 · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: 圏 (数学)と群論 · 続きを見る »

群論の用語

群 (G, •) は集合 G で三つの公理を満たす G 上の(つまり G において閉じた)二項演算 "•" を組にしたものである。群の三公理とは.

新しい!!: 圏 (数学)と群論の用語 · 続きを見る »

群準同型

数学、特に群論における群の準同型写像(じゅんどうけいしゃぞう、group homomorphism)は群の構造を保つ写像である。準同型写像を単に準同型とも呼ぶ。.

新しい!!: 圏 (数学)と群準同型 · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: 圏 (数学)と結合多元環 · 続きを見る »

環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

新しい!!: 圏 (数学)と環の局所化 · 続きを見る »

環の圏

数学の特に圏論における(単位的・結合)環の圏(かんのけん、category of rings) は、すべての(単位元持つ)環を対象とし、すべての(単位元を保つ)環準同型を射とする圏である。他の多くの例と同じく、環の圏は大きい(すなわち、すべての環の成す類は集合でない真の類である)。.

新しい!!: 圏 (数学)と環の圏 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 圏 (数学)と環上の加群 · 続きを見る »

環論

数学において、環論(かんろん、ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった 。.

新しい!!: 圏 (数学)と環論 · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: 圏 (数学)と環準同型 · 続きを見る »

特性類

特性類 (Characteristic class)とは、位相空間 X の上のベクトル束やより一般に主束に対してさだまる X のコホモロジー類である。特性類は、主束の切断がどの程度存在するによって定まるもので、局所的には自明である主束の構造が大域的にどれほど非自明であるかをはかる位相不変量である。特性類は、代数多様体上のベクトル束に対しても定義され、代数トポロジー、微分幾何学や代数幾何学における統一した幾何学的な考え方の一つである。 1935年の多様体上のベクトル場についてのエドゥアルト・シュティーフェル (Eduard Stiefel) と (Hassler Whitney) の仕事より、特性類の考え方が発生した。.

新しい!!: 圏 (数学)と特性類 · 続きを見る »

直積順序

数学において、二つの順序集合 A と B が与えられたとき、そのデカルト積 A × B に対して、一つの半順序を以下のように導入することが出来る。 A × B 内の与えられた二つのペア (a1,b1) および (a2,b2) に対して、a1 ≤ a2 および b1 ≤ b2 が成り立つとき、そしてそのときに限り と定義する。 この順序は直積順序(ちょくせきじゅんじょ、)と呼ばれる。A × B 上の他の順序として、辞書式順序がある。 直積順序を伴うデカルト積は、単調函数を射とする半順序集合の圏における積である。.

新しい!!: 圏 (数学)と直積順序 · 続きを見る »

随伴関手

数学の特に圏論における随伴(ずいはん、adjunction)は、二つの関手の間に考えることができる(ある種の双対的な)関係をいう。随伴の概念は数学に遍在し、最適化や効率に関する直観的概念を明らかにする。 最も簡潔な対称的定義において、圏 と の間の随伴とは、二つの関手 の対であって、全単射の族 が変数 に関して自然(あるいは函手的)となるものを言う。このとき、関手 を左随伴函手と呼び、他方 を右随伴函手と呼ぶ。また、「 は の左随伴である」 (同じことだが、「 は の右随伴である」)という関係を と書く。 以下では、この定義や他の定義を詳細化する。.

新しい!!: 圏 (数学)と随伴関手 · 続きを見る »

隣接代数 (順序理論)

数学の順序集合論において隣接代数(りんせつだいすう、incidence algebra)または接合環(せつごうかん)とは、任意の局所有限な半順序集合と単位元を持つ可換環に対して定義される結合多元環である。局所有界半順序集合の接続代数は、1964年のジャン・カルロ・ロタ(Gian-Carlo Rota)による論文に始まり、多くの組合せ論研究者により発展した。.

新しい!!: 圏 (数学)と隣接代数 (順序理論) · 続きを見る »

Ext函手

数学では、ホモロジー代数の Ext函手(Ext functors)は、Hom函手の導来函手である。Ext函手は、最初代数幾何学で使われ、その後は数学の多くの分野で共通して使われている。名称の "Ext" は、函手とアーベル圏での拡大(Extension)との関係からきている。.

新しい!!: 圏 (数学)とExt函手 · 続きを見る »

鎖複体

数学において、鎖複体あるいはチェイン複体 (chain complex) と双対鎖複体あるいは余鎖複体、コチェイン複体 (cochain complex) は、元来は代数トポロジーの分野で使われていた。(余)鎖複体は、位相空間の様々な次元の(コ)と(コ)バウンダリの間の関係を表す代数的な手段である。より一般的に、ホモロジー代数では、空間との関係を立ち去った抽象的な鎖複体の研究がされる。ホモロジー代数としての研究では、(余)鎖複体を公理的に代数的構造として扱う。 (余)鎖複体の応用は、通常、ホモロジー群(余鎖複体ではコホモロジー群)を定義し適用する。より抽象的な設定では、様々な同値関係(たとえば、のアイデアで始まるもの)が複体へ適用される。鎖複体は、アーベル圏で定義することも容易にできる。.

新しい!!: 圏 (数学)と鎖複体 · 続きを見る »

順序群

抽象代数学における(半)順序群(じゅんじょぐん、ordered group)は、両側移動不変な順序関係を付加的な構造として備えた群である。.

新しい!!: 圏 (数学)と順序群 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 圏 (数学)と順序集合 · 続きを見る »

順像関手

数学の層論や代数幾何学の分野に現れる順像関手(じゅんぞうかんしゅ、)とは、層の切断の概念を相対的な場合へ一般化するものである。.

新しい!!: 圏 (数学)と順像関手 · 続きを見る »

表現論

表現論(ひょうげんろん、representation theory)とは、ベクトル空間の線型変換として代数構造を表現することにより研究し、代数構造上の加群を研究する数学の一分野である。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象は、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が群の要素が行列の積により正則行列で表現されている。 Classic texts on representation theory include and.

新しい!!: 圏 (数学)と表現論 · 続きを見る »

豊穣圏

数学の一分野、圏論における豊穣圏(ほうじょうけん、enriched category; 豊饒圏、豊穣化された圏、豊饒化された圏)は、(局所的に小さい)圏におけるを一般のモノイド圏の対象に置き換えて得られる圏の一般化である。このようなものを考える意義は、実際の応用の多くにおいて射集合が追加の構造を備えている(例えば射のベクトル空間や射の位相空間になっている)ことが期待されることがしばしばあるという観察に基づく。 一つの豊饒圏において、対象の任意の対に付随する射集合は、よくわからない「射対象」("hom-objects"; ホム対象) の成す何らかの固定されたモノイド圏(「射圏」; "hom-category"; ホム圏)の対象に置き換えられる。通常の圏における射の(結合的な)合成を再現するためには、射圏は射対象の間に定義される結合的な合成を持たなければならない。つまり、少なくとも、射対象の間の二項演算がモノイド圏の構造から導入される必要がある。文脈によってはその演算が可換であったり、右随伴を持ったりすることがあり得るし、それが必要とされる場合もある(それにより圏がや、さらにモノイド閉圏となる)。 したがって豊饒圏論は広く多様な構造を同じ枠組みに包摂するものである。そのような構造として以下のようなものが挙げられる.

新しい!!: 圏 (数学)と豊穣圏 · 続きを見る »

距離空間の圏

数学の一分野としての圏論において距離空間の圏(きょりくうかんのけん、category of metric spaces) は、すべての距離空間を対象とし、すべての(計量写像, short map)を射とする圏である。二つの非拡大写像の合成は再び非拡大であるから、確かにこれは圏を定めている。この圏を初めて考察したのは である。 ここに、射として連続写像をとらないのは、構造としての距離函数との整合を考えてのことである。非拡大写像は任意の二点間の距離を増加させない連続写像である。.

新しい!!: 圏 (数学)と距離空間の圏 · 続きを見る »

部分対象

圏論という数学の分野において,部分対象(ぶぶんたいしょう,subobject)は,大まかに言って,同じ圏の別の対象の中にいる対象である.この概念は,集合論における部分集合,群論における部分群,位相空間論における部分位相空間などの概念の一般化であるMac Lane, p. 126.対象の詳細な構造は圏論では重要でないから,部分対象の定義は,元を使わず,対象が別の対象の中にどのようにいるかを記述する射に依る. 部分対象の双対概念は商対象(しょうたいしょう,quotient object)である.これは商集合,商群,商位相空間などの概念を一般化する..

新しい!!: 圏 (数学)と部分対象 · 続きを見る »

部分圏

数学において,圏 の部分圏(ぶぶんけん,subcategory)とは,圏 であって対象が の対象で射が の射で同じ恒等射と射の合成をもつものである.直観的には, の部分圏は から対象と射をいくつか「取り除いて」得られる圏である..

新しい!!: 圏 (数学)と部分圏 · 続きを見る »

関係の圏

数学の一分野である圏論において関係の圏(かんけいのけん、category of relations) は、すべての集合を対象とし、すべての二項関係を射とする圏である。 この圏における射 が 間の関係であるというのは、 であることを意味する。 二つの関係, の合成は で与えられる。.

新しい!!: 圏 (数学)と関係の圏 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 圏 (数学)と関手 · 続きを見る »

関手圏

圏論という数学の分野において、与えられた2つの圏の間の関手たちは関手圏(かんしゅけん、functor category)と呼ばれる圏をなす。その対象は関手であり、射は関手の間の自然変換である。関手圏は主に2つの理由によって興味が持たれる:.

新しい!!: 圏 (数学)と関手圏 · 続きを見る »

閉包 (位相空間論)

数学において、位相空間の部分集合の閉包(へいほう、closure)は、その部分集合の触点(部分集合の点とそれらの集積点)を全て集めて得られる集合である。直観的には、部分集合の触点とはその部分集合の「いくらでも近く」にある点と考えられる。閉包の概念は様々な意味で開核の概念の双対になっている。.

新しい!!: 圏 (数学)と閉包 (位相空間論) · 続きを見る »

自己準同型環

抽象代数学において、アーベル群 X の自己準同型環(endomorphism ring) は、X からそれ自身への準同型写像( 上の自己準同型)すべてからなる集合である。加法は(後述)で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(endomorphism algebra; 自己準同型代数)とも呼ばれる。.

新しい!!: 圏 (数学)と自己準同型環 · 続きを見る »

自由積

数学、とくに群論における自由積(じゆうせき、free product)は、2つの群 G, H から新しい群 G ∗ H を構成する操作である。G ∗ H は G と H をともに部分群として含み、G と H の元によって生成され、そして、これらの性質を持つ「最も一般的な」群である。G と H の一方が自明でないかぎり、自由積は必ず無限群である。自由積の構成は自由群(与えられた生成集合から作ることのできる最も一般的な群)の構成と類似している。 自由積は群の圏における余積である。つまり、自由積が群論において果たす役割は、集合論における非交和や加群論における直和のそれと同じである。もとの群が可換であったとしても、一方が自明でない限り、自由積は可換ではない。したがって、自由積はアーベル群の圏における余積ではない。 自由積はのために代数トポロジーにおいて重要である。この定理はある条件を満たす2つの弧状連結位相空間の和集合の基本群は常にもとの空間の基本群の融合積であるというものである。とくに2つの空間のウェッジ和(すなわち1点で2つの空間を貼りあわせて得られる空間)の基本群は単に空間の基本群の自由積である。 自由積はまた木に自己同型として作用する群の研究であるにおいても重要である。特に、木に対する有限頂点固定群を持つ任意の群作用は融合積とを用いて有限群から構成することができる。この理論において、双曲平面のある種の三角形分割上へのモジュラー群の作用を用いれば、モジュラー群が位数 および の巡回群の、位数 の巡回群上でとった融合積に同型となることが示せる。 群の自由積(=余積)はの圏において考えるのが適している 。群の非交和は、群にはならないが、亜群にはなるという点に注目する。任意の亜群 は必ず普遍群 (universal group) を持つが、群の非交和の普遍群はそれら群の自由積(=余積)に一致するのである。.

新しい!!: 圏 (数学)と自由積 · 続きを見る »

自然変換

数学の一分野である圏論において、自然変換(しぜんへんかん、natural transformation)は、ある函手をその圏に関する内部構造(即ち射の合成)を保ちながら別の函手に変形する方法を与えるものである。したがって直観的には、自然変換というのは「函手間の射」のことであると考えうる。このことは実際に、函手圏と呼ばれるものを定義することにより厳密に定式化することができる。圏論において自然変換の概念は、圏と函手に次いで最も基本的な概念であり、それ故に圏論を用いる議論の大部分に現れる。.

新しい!!: 圏 (数学)と自然変換 · 続きを見る »

離散空間

数学の位相空間論周辺分野における離散空間(りさんくうかん、discrete space)は、その点がすべてある意味で互いに「孤立」しているような空間で、位相空間(またはそれと同様の構造)の非常に単純で極端な例の一つを与える。.

新しい!!: 圏 (数学)と離散空間 · 続きを見る »

零射

数学の一分野圏論における零射(れいしゃ、ゼロしゃ、zero morphism)は特別な種類の射で、零対象への射と零対象からの射の性質を併せ持つ。.

新しい!!: 圏 (数学)と零射 · 続きを見る »

集合の圏

数学の一分野である圏論において、集合の圏(しゅうごうのけん、category of sets)Set (あるいは \mathcal などとも書く) は、その対象の成す類が集合全体の成す類であるような圏である。ただし、対象の間の射の類は、集合 に対して を任意の写像とするとき、 の形に書ける三つ組全体の成す集合によって与えられる。.

新しい!!: 圏 (数学)と集合の圏 · 続きを見る »

連結和

トポロジーでは、連結和(れんけつわ、connected sum)は、多様体の幾何学的変形の方法のひとつで、2つの多様体が与えられたとき、互いを選んだ点でつなぎ合わせる。この構成は、閉曲面の分類で重要な役割を果たす。 このことを一般化して、右図のように同一な部分多様体に沿って多様体を張り合わせることができる。この一般化はファイバー和とも呼ばれる。結び目和や結び目の合成と呼ばれる結び目の連結和の考え方とも密接に関係する。.

新しい!!: 圏 (数学)と連結和 · 続きを見る »

F代数

数学の特に圏論におけるF-代数(エフだいすう、F-algebra)は、(自己)関手 F に従って定義される構造の一つで、リストや木構造のようなプログラミングで使われるデータ構造を表現するのに利用できる。 ''F''-始代数は、数学的帰納法の原理を捉えたものと考えることができる。文脈上紛れの虞が無い場合は、函手 F を明示するための接頭辞 F- を省略して単に代数ということがある。 F-代数は ''F''-余代数の双対である。.

新しい!!: 圏 (数学)とF代数 · 続きを見る »

Hom函手

圏論において、ある圏の対象の間の射の集合(ともいう)は、集合の圏への重要な函手を生成する。これらの函手をHom函手(Hom functor)と呼び、圏論や数学の他の分野で多くの応用を持つ。.

新しい!!: 圏 (数学)とHom函手 · 続きを見る »

VAR

VAR.

新しい!!: 圏 (数学)とVAR · 続きを見る »

束 (位相幾何学)

数学において、束(そく、bundle)はファイバー束の一般化であり、局所的な積構造の条件が落ちている。局所的な積構造の条件は束が位相を持っているから定義できる。この条件がないために、より一般的な対象を束と考えることができる。例えば、 と が集合であるときに束 を考えることができる。ファイバー束のときにはファイバーはすべて同型(ベクトル束のとき)および同相でなければならなかったが、束においては逆像 がすべて同じように見えるということはもはや、正しくない。.

新しい!!: 圏 (数学)と束 (位相幾何学) · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: 圏 (数学)と束 (束論) · 続きを見る »

森田同値

代数学において、森田同値(もりたどうち、Morita equivalence)とは、環論的な多くの性質を保つ環の間の関係のことを言う。これはにおいて同値関係と双対性に関する記号を定義した森田紀一にちなんで名付けられた。.

新しい!!: 圏 (数学)と森田同値 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 圏 (数学)と極限 · 続きを見る »

極限 (圏論)

数学の一分野圏論において、極限とは積やや逆極限といった普遍的な構成たちの根底にある性質を捉えた抽象概念である。双対的に余極限とは非交和、直和、余積、、直極限のような構成を一般化したものである。 極限と余極限は、強く関連した概念である普遍性や随伴関手と同様に、高度に抽象化された存在である。これらを理解するために、一般化される前の特定の概念を先に学ぶのがよい。.

新しい!!: 圏 (数学)と極限 (圏論) · 続きを見る »

次数付きベクトル空間

数学における次数付きベクトル空間(じすうつき­ベクトル­くうかん、graded vector space; 次数ベクトル空間、次数付き線型空間、次数線型空間)は、 (grading) と呼ばれる追加の構造を持つベクトル空間であり、次数付けにより適当な線型部分空間の直和として記述される。.

新しい!!: 圏 (数学)と次数付きベクトル空間 · 続きを見る »

測度保存力学系

数学における測度保存力学系(そくどほぞんりきがくけい、)は、力学系の抽象的形成や、特にエルゴード理論に現れる一研究対象である。.

新しい!!: 圏 (数学)と測度保存力学系 · 続きを見る »

有限集合の圏

数学の一分野、圏論における有限集合の圏(ゆうげんしゅうごうのけん、category of finite sets) は、すべての有限集合を対象とし、それら対象の間のすべての写像を射とする圏である。関連する圏として、有限順序数の圏(ゆうげんじゅんじょすうのけん、category of finite ordinals) はすべての有限順序数を対象とし、それらの間のすべての写像を射とする圏である。.

新しい!!: 圏 (数学)と有限集合の圏 · 続きを見る »

数学における統一理論

数学の統一理論(すうがくのとういつりろん、unified theory of mathematics)に到達するためのいくつかの試みが歴史的に行われてきた。は、すべての主題(科目)は一つの理論に収まるべきであるという明確な展望を抱いている。.

新しい!!: 圏 (数学)と数学における統一理論 · 続きを見る »

数学的対象

数学および数学の哲学において、数学的対象(すうがくてきたいしょう、mathematical object)は数学の中から生じてくる抽象的対象である。 一般的に遭遇する数学的対象として、数、順列、分割、行列、集合、関数、および関係などが挙げられる。数学の分科としての幾何学は、六角形、点、線、三角形、円、球、多面体、位相空間、および多様体のような対象を持つ。別の分科の代数学は、群、環、体、格子、および束といった対象を持つ。圏は、数学的対象を一斉に生じさせるものであるとともに、それ自体がひとつの数学的対象である。 数学的対象の存在論的な立場は、数学の哲学で調査および議論される重要な主題である。この議論については、論文を参照のこと。.

新しい!!: 圏 (数学)と数学的対象 · 続きを見る »

普遍代数学

数学の一分野としての普遍代数学(ふへんだいすうがく、Universal algebra)あるいは一般代数学(いっぱんだいすうがく、general algebra)は、構造の「モデル」となる例についてではなく代数的構造そのものについて研究する分野である。例えば、その研究対象として個々の群を考えるのではなく群論そのものをその研究対象とするのである。.

新しい!!: 圏 (数学)と普遍代数学 · 続きを見る »

普遍性

数学の様々な分野において、ある特定の状況下にて一意に射を定めるような抽象的性質が、特定の構成を定義、あるいは特徴づけたりする事がしばしばある。このような性質を普遍性(universal property)と呼ぶ。普遍性は圏論を用いて抽象的に論考される。 結果として、我々は普遍性の一般的な扱い方を得ることになる。例えば、群の直積や直和、自由群、積位相, ストーン-チェックのコンパクト化, テンソル積, 逆極限 と 順極限, 核と余核, 引き戻し, 押し出し および イコライザ、など。.

新しい!!: 圏 (数学)と普遍性 · 続きを見る »

0

0 |- | Divisors || all numbers |- | Roman numeral || N/A |- | Arabic || style.

新しい!!: 圏 (数学)と0 · 続きを見る »

1の分割

数学において、位相空間 X の 1 の分割(いちのぶんかつ、partition of unity)は、X から単位区間 への連続関数の集合 R であって、すべての点 x\in X に対して以下の二条件を満たすものである:.

新しい!!: 圏 (数学)と1の分割 · 続きを見る »

ここにリダイレクトされます:

大きい圏対象 (圏論)小さな圏小さい圏小圏局所的に小さい圏

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »