ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

可換環

索引 可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

179 関係: 加群の層加群の局所化加群の圏加群のテンソル積加法的多項式基底変換原始環半原始環半双線型形式半局所環半環単純環単項イデアル環反対圏反転環可解群可逆層可換体可換環上の微分法可換環論双線型形式双線型写像同値関係多変数多項式多項式多項式の根多項式函数多項式環多重線型代数多重線型写像大局次元外積代数実二次正方行列完備化 (環論)対合環対称代数射 (圏論)局所定数関数局所コンパクト空間局所環付き空間巡回群両側加群中山の補題中心 (代数学)主イデアル一般ガウス・ボネの定理一次分数変換一次関数一意分解環平方根...二年生の夢二項定理二項係数二重数二次形式代数のテンソル積代数的K理論位相的場の理論形式的冪級数体上の多元環体上有限生成環の理論微分小微分作用素係数環の変更包含写像ネーター加群ハメル次元ハウスドルフ空間モノイド対象モノイド圏ユークリッドの補題ユニモジュラ行列リー代数ブラーマグプタの二平方恒等式ブラウアー群ヒルベルト–ポワンカレ級数ビネ・コーシーの恒等式テンソルの縮約テンソル代数フロベニウス多元環フロベニウス自己準同型ホモロジー代数学ホップ代数ホプキンス・レヴィツキの定理ベクトル空間の双対系判別式列空間分解型複素数分配多元環分数アルティン環アーベル群イデアル (環論)イデアルの根基イデアル商エミー・ネーターオイラーの四平方恒等式クラメルの公式クルル環クルル次元ケーラー微分ケイリー・ハミルトンの定理コルモゴロフ空間コーエン・マコーレー環コーシー・ビネの公式コホモロジー環ゴールドマン整域ザリスキー位相ジャコブソン予想ジャコブソン根基スマッシュ積スティーフェル・ホイットニー類セール・スワンの定理冪零イデアル冪零元商体全商環剰余体剰余環剰余類環CM-タイプのアーベル多様体素イデアル素元素因数分解素環群環結合多元環終結式環 (数学)環の局所化環の圏環の冪零根基環上の加群環上の多元環環論環準同型直交補空間D-加群非可換幾何非可換環非可換整域順序環行列行列の乗法行列式行列群行列環豊富な直線束超実数輪 (数学)自由代数連接層逆元逆数学Invariant basis numberMagma (数式処理システム)Tor関手接束捩れ (代数学)根号森田同値概型構造定数 (数学)次元 (数学)次元論 (代数学)次数付き可換環次数付き対称代数正則列準素イデアル昇鎖条件既約多項式既約位相空間既約イデアル既約元数学における統一理論数学記号の表整域整閉整域整数 インデックスを展開 (129 もっと) »

加群の層

数学において, 加群の層 (sheaf of -modules) あるいは単に環付き空間 上の 加群 (-module) とは,層 であって, の任意の開部分集合 に対し, が 加群であり,制限写像 が制限写像 と整合的なもの,すなわち の任意の と の任意の に対し, の制限が の制限と の制限との積であるものである. 標準的な場合は がスキームで がその構造層であるときである. が \underline のとき, 加群の層はアーベル群の層(すなわちアーベル層)と同じである. が環 の素スペクトルであるとき,任意の 加群は自然に 加群を定義する(associated sheaf と呼ばれる).同様に, が次数環で が の であるとき,任意の次数加群は自然に 加群を定める.そのように生じる 加群は準連接層の例であり,実は,アファインあるいは射影スキーム上,すべての準連接層はこのようにして得られる. 環付き空間上の加群の層はアーベル圏をなす.さらに,この圏は充分単射的対象を持ち,したがって層係数コホモロジー \operatorname^i(X, -) を \Gamma(X, -) の 次右導来関手として定義でき,実際そう定義する..

新しい!!: 可換環と加群の層 · 続きを見る »

加群の局所化

可換環論や代数幾何学において、加群の局所化 (localization of a module) は環上の加群に分母を導入する構成である。正確には、与えられた加群 M から を含む新しい加群 S−1M を構成する系統的な方法である。ここで分母の s は R のある与えられた部分集合 S を動く。 この技術は、特に代数幾何学において、加群と層論との関係のように、基本的となっている。加群の局所化は環の局所化を一般化する。.

新しい!!: 可換環と加群の局所化 · 続きを見る »

加群の圏

数学の一分野である圏論において加群の圏(かぐんのけん、category of modules)Mod は、すべての加群を対象としすべての加群準同型を射とする圏である。.

新しい!!: 可換環と加群の圏 · 続きを見る »

加群のテンソル積

数学において、加群のテンソル積 (tensor product of modules) は双線型写像(例えば積)についての議論を線型写像(加群準同型)の言葉でできるようにする構成である。その加群の構成はベクトル空間のテンソル積の構成と類似であるが、可換環上の加群の組に対して実行して第三の加群を得ることができ、また任意の環上の左加群と右加群の組に対しても実行できてアーベル群が得られる。テンソル積は抽象代数学、ホモロジー代数学、代数トポロジー、代数幾何学の分野において重要である。ベクトル空間に関するテンソル積の普遍性は抽象代数学のより一般的な状況に拡張される。それによって線型演算を通じて双線型あるいは多重線型演算を研究することができる。代数と加群のテンソル積はのために使うことができる。可換環の場合には、加群のテンソル積を繰り返して加群のテンソル代数を作ることができ、加群の積を普遍的な方法で定義することができる。.

新しい!!: 可換環と加群のテンソル積 · 続きを見る »

加法的多項式

数学における加法的多項式(かほうてきたこうしき、additive polynomials)は古典代数的数論において重要なトピックである。.

新しい!!: 可換環と加法的多項式 · 続きを見る »

基底変換

線型代数学において、ある次元 n のベクトル空間に対する基底は、n 個のベクトル α1,..., αn の列で、その空間内のすべてのベクトルがそれら基底ベクトルの線型結合として一意的に表現されるという性質が成り立つ。作用素の行列表示も、同様にその選ばれた基底によって一意的に決定される。しばしば一つのベクトル空間に対して、複数の基底について考えることが望ましいことがあり、したがって線型代数学における本質的に重要な概念として、ある一つの基底に対するベクトルと作用素の座標に関する表現を、他の基底に対する同値な表現へと簡単に変換する、というものが存在する。そのような変換のことを基底変換(きていへんかん、)と呼ぶ。 以下ではベクトル空間の語を用い、記号 R は実数の体を意味するために用いられるが、そこで議論される結果は R が可換環であり「ベクトル空間」が「自由R-加群に置き換えられた場合にも成立する。.

新しい!!: 可換環と基底変換 · 続きを見る »

原始環

論において、左原始環(ひだりげんしかん、left primitive ring)とは、忠実な単純左加群をもつ環である。よく知られた例として、ベクトル空間の自己準同型環や、標数0の体上のワイル代数がある。.

新しい!!: 可換環と原始環 · 続きを見る »

半原始環

代数学において、半原始環(semiprimitive ring)またはジャコブソン半単純環 (Jacobson semisimple ring)、または短くして J-半単純環 (J-semisimple ring) とは、ジャコブソン根基が 0 であるような環のことである。これは半単純環よりも一般的なタイプの環であるが、単純加群はなお環についての十分な情報を与えてくれる。有理整数環のような環は半原始環であり、アルティン的半原始環はちょうど半単純環である。半原始環は原始環のとして理解することができ、それはによって述べられている。.

新しい!!: 可換環と半原始環 · 続きを見る »

半双線型形式

数学の特に線型代数学における 上の半双線型形式(はんそうせんけいけいしき、sesquilinear form; 準双線型形式。)とは、写像 で一方の引数に関して線型かつ他方の引数に関してとなるようなものを言う。名称は「1 と 1/2」を意味するラテン語の ''sesqui-'' に由来する。これと対照して、双線型形式は両引数に関して線型であることを意味するが、特に専ら複素数体上の空間を扱うような多くの文献において、半双線型形式の意味で「双線型形式」と呼ぶものがある。 動機付けとなる例は複素ベクトル空間上の内積で、これは双線型ではないがその代わり半双線型である。後述の幾何学的動機付けの節も参照。.

新しい!!: 可換環と半双線型形式 · 続きを見る »

半局所環

数学において、半局所環 (semi-local ring) は R/J(R) が半単純環であるような環 R である。ここで J(R) は環 R のジャコブソン根基である。 この条件は R の極大右(左)イデアルが有限個であれば満たされる。さらに環 R が可換のときには逆も成り立つため、可換環に対して半局所環はしばしば「極大イデアルが有限個である環」と定義される。 いくつかの文献では一般の可換半局所環を擬半局所環 (quasi-semi-local ring) と呼び、極大イデアルが有限個のネーター環を半局所環と呼んでいる。 したがって半局所環は、極大(右/左/両側)イデアルをただひとつだけもつ局所環よりも一般的である。.

新しい!!: 可換環と半局所環 · 続きを見る »

半環

抽象代数学において、半環(はんかん、semi-ring)とは環に類似した代数的構造で、環の公理から加法的逆元の存在を除いたようなもののことである。負元 (negative) の無い環 (ring) ということから rig という用語もしばしば用いられる。.

新しい!!: 可換環と半環 · 続きを見る »

単純環

数学の環論において、( を持つ可換とは限らない)環 が単純(たんじゅん、simple)であるとは、 の両側イデアルが と しか存在しないことをいう。.

新しい!!: 可換環と単純環 · 続きを見る »

単項イデアル環

数学において、単項右(左)イデアル環、主右(左)イデアル環 (principal right (left) ideal ring) は環 R であってすべての右(左)イデアルがある x ∈ R に対して xR (Rx) の形であるようなものである。(1つの元で生成されたこの形の右と左のイデアルは単項イデアルである。)これが左と右のイデアル両方に対して満たされるとき、例えば R が可換環のような場合、R を単項イデアル環、主イデアル環 (principal ideal ring) あるいはシンプルに 単項環、主環 (principal ring) と呼ぶことができる。 R の有限生成右イデアルだけが単項であるならば、R は右ベズー環 (right Bézout ring) と呼ばれる。左ベズー環は同様に定義される。これらの条件は域 (domain) においてベズー域として研究される。 整域でもあるような可換単項イデアル環は単項イデアル整域 (PID) と呼ばれる。この記事において焦点は域とは限らない単項イデアル環のより一般的な概念に当てる。.

新しい!!: 可換環と単項イデアル環 · 続きを見る »

反対圏

圏論という数学の分野において,与えられた圏 の反対圏(はんたいけん,opposite category),逆圏(ぎゃくけん)あるいは双対圏(そうついけん,dual category) は射を逆にする,つまり,各射の始域と終域を交換することによって作られる.逆にする操作を2回やるともとの圏になるので,逆圏の逆圏はもとの圏自身である.記号で書けば,(C^)^.

新しい!!: 可換環と反対圏 · 続きを見る »

反転環

代数学において、環の逆、逆転、反対あるいは反転 (opposite) は同じ元と同じ加法演算をもつ環であって、積が逆順で行われるものである。 より正確には、環 (R, +, ·) の反転は環 (R, +, *) であって、積 '*' が a * b.

新しい!!: 可換環と反転環 · 続きを見る »

可解群

数学、特に群論の分野において、可解群(かかいぐん、solvable group, soluble group、Auflösbare Gruppe)は、アーベル群から群の拡大を用いて構成できる群のことである。つまり、可解群は導来列が自明な群で終わるような群のことである。 歴史的には、「可解」という語はガロア理論による5次以上の一般の方程式は代数的に解けないこと(アーベル–ルフィニの定理)の証明から来ている。特に、標数0の体上の代数方程式が根号を用いて解けるのは対応するガロア群が可解群であるとき、およびそのときに限る。.

新しい!!: 可換環と可解群 · 続きを見る »

可逆層

数学において,可逆層(かぎゃくそう,invertible sheaf)とは,環付き空間 上の連接層 であって, 加群のテンソル積に関して逆元 が存在するものである.可逆層は直線束という位相的な概念の代数幾何学における対応物である.との相互作用のため,代数多様体の研究で中心的な役割を果たす..

新しい!!: 可換環と可逆層 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 可換環と可換体 · 続きを見る »

可換環上の微分法

数学における可換環上の微分法(かかんかんじょうのびぶんほう、differential calculus over commutative algebras)は、古典的な微分法における既知の概念の大半を純代数学的な言葉で定式化する研究観察に基づく可換代数学の一分野である。.

新しい!!: 可換環と可換環上の微分法 · 続きを見る »

可換環論

可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。.

新しい!!: 可換環と可換環論 · 続きを見る »

双線型形式

数学の特に抽象代数学および線型代数学における双線型形式(そうせんけいけいしき、bilinear form)とは、スカラー値の双線型写像、すなわち各引数に対してそれぞれ線型写像となっている二変数函数を言う。より具体的に、係数体 上のベクトル空間 で定義される双線型形式 は.

新しい!!: 可換環と双線型形式 · 続きを見る »

双線型写像

数学において双線型写像(そうせんけいしゃぞう、)とは、二つのベクトル空間それぞれの元の対に対しての第三のベクトル空間の元を割り当てる写像であって、各引数に関して線型となるようなものを言う。その一つの例が、行列の積である。.

新しい!!: 可換環と双線型写像 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 可換環と同値関係 · 続きを見る »

多変数多項式

代数学における適当な単位的可換環 に係数を持つ多変数多項式(たへんすうたこうしき、multi­variable polynomial; multi­variate polynomial, polynôme en plusieurs indéterminées, 多元多項式)は、不定元 に関する一変数多項式環 を一般化する -結合多元環の元を言う。有限個の不定元に関する多項式環 は に関して帰納的に構成できる。すなわち、この多項式環は、一つの不定元 の多項式環 に係数を持つ多項式全体の成す環である。任意の添字集合 (無限集合でもよい)で添字付けられた任意個数の不定元 に関する多項式環 は、 の任意の有限部分集合 に対する多項式環 を亙る「合併」として定義される。より精確には、 が有限でも無限でも、 はモノイド環として定義できる。それはつまり、モニック単項式(つまり有限個の不定元 からなる冪積)全体の成すモノイドを考え、それら単項式の -係数の形式線型結合として多項式は定義されるということである。 以下本項では、 は単位的可換環とし、-多元環は結合的かつ単位的な多元環を意味するものとする。.

新しい!!: 可換環と多変数多項式 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 可換環と多項式 · 続きを見る »

多項式の根

数学における多項式 の根(こん、root)は、 を満たす値 を言う。すなわち、根は未知数 の多項式方程式 の解であり、また対応する多項式函数の零点である。例えば、多項式 の根は および となる。 ある体に係数を持つ非零多項式は、「より大きい」体の中にしか根を持たないこともあるが、根の数はその多項式の次数より多くなることはない。例えば は次数 で有理数係数だが、有理根を持たず、二つの根を実数体 に(したがって 複素数体 の中に)おいて持つ。ダランベール–ガウスの定理は次数 の任意の複素係数多項式が(必ずしも異ならない) 個の根を持つことを述べるものである。 多項式の根の概念は、多変数多項式の零点の概念に一般化される。.

新しい!!: 可換環と多項式の根 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: 可換環と多項式函数 · 続きを見る »

多項式環

数学、殊に抽象代数学における多項式環(たこうしきかん、polynomial ring)は環に係数を持つ一変数または多変数の多項式の全体の集合が成す環である。多項式環はヒルベルトの基底定理や分解体の構成、線型作用素の理解など数学のかなり広い分野に影響をもつ概念である。セール予想のような多くの重要な予想が、他の環の研究に影響をもち群環や形式冪級数環のようなほかの環の定義にさえ影響を及ぼしている。.

新しい!!: 可換環と多項式環 · 続きを見る »

多重線型代数

数学における多重線型代数(たじゅうせんけいだいすう、multilinear algebra)とは、線型空間における多重線型性 を扱う代数学の分野。多重線型性は典型的には線型環における積の構造に現れている。 を –代数とするとき、自然数 に対し、 上で定義された 変数写像 はある変数以外の変数を固定して一変数の写像と見なしたときにK –線型写像を定めている。より一般に 上のベクトル空間 上の 変数写像についてもある変数以外の変数を固定して一変数写像と見なしたときに 線型写像になっているようなものを考えることができるが、このような写像は多重線型写像 とよばれる。多重線型写像は何らかの意味でベクトルの「積」を表していると考えられる。 多重線型性を捉える基本的な対象としてテンソル代数(てんそるだいすう、)、対称代数(たいしょうだいすう、)、外積代数(がいせきだいすう、)が挙げられる。テンソル代数におけるテンソル積によって、ベクトルの積として最も一般的なものが定式化される。また、対称積や外積によって一定の付加的な条件を満たすような積が捉えられる。.

新しい!!: 可換環と多重線型代数 · 続きを見る »

多重線型写像

線型代数学において、多重線型写像(たじゅうせんけいしゃぞう、multilinear map)は各変数ごとに線型な多変数の関数である。正確には、多重線型写像は、V_1,\ldots,V_n とW\! をベクトル空間(あるいは可換環上の加群)として、次の性質を満たす写像 である: 各 i\! に対して、v_i\! を除くすべての変数を定数のまま止めると、f(v_1,\ldots,v_n) は v_i\! の線型写像である。 一変数の多重線型写像は線型写像であり、二変数のそれは双線型写像である。より一般に、k 変数の多重線型写像は k 重線型写像 (k-linear map) と呼ばれる。多重線型写像の終域が係数体であれば、多重線型形式と呼ばれる。多重線型写像や多重線型形式は多重線型代数において研究の基本的な対象である。 すべての変数が同じ空間に属していれば、、反対称、 k 重線型写像を考えることができる。基礎環(あるいは体)の標数が 2 でなければ後ろ2つは一致し、標数が 2 であれば前2つは一致する。 f\colon V_1 \times \cdots \times V_n \to W\text を有限次元ベクトル空間の間の多重線型写像としよう。V_i\! の次元を d_i\!, W\! の次元を d\! とする。各 V_i\! に対して \ を、W\! に対して基底 \ を選べば(ベクトルにはボールドを用いた)、スカラー A_^k の集合を次によって定義できる: するとスカラー \ は多重線型写像 f\! を完全に決定する。とくに、1 \leq i \leq n\! に対して であれば、 -->f\colon R^2 \times R^2 \times R^2 \to R を考えよう。V_i.

新しい!!: 可換環と多重線型写像 · 続きを見る »

大局次元

論とホモロジー代数において、環 A の左(右)大局次元あるいは大域次元(global dimension)(または大局ホモロジー次元(global homological dimension)、ときには単にホモロジー次元(homological dimension)と呼ばれる)は、すべての左(右) A-加群の射影次元の集合の上限として定義される環のホモロジー的不変量である。それは非負の整数か無限大に値をとり l. gl. dim A (r. gl. dim A )と書かれる。さらに両者が一致するときには単に大局次元と言い gl. dim A と書かれる。 一般の非可換環 A に対しては左と右の大局次元は異なるかもしれない。しかしながら、A が左かつ右ネーター環であれば、これらの大局次元は両方とも、定義が左右対称的な弱大局次元に等しいことがわかる。したがって、左かつ右ネーター環に対しては、両者は一致し、大局次元について話すことが正当化される。 大局次元は可換ネーター環の次元論で重要な技術的概念である。.

新しい!!: 可換環と大局次元 · 続きを見る »

外積代数

数学におけるベクトルの外積(がいせき、exterior product)あるいは楔積(くさびせき、ウェッジ積、wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。線型代数学において外積は、線型変換の行列式や小行列式を記述する基底の取り方に依存しない抽象代数的な仕方を提供し、階数や線型独立性といった概念に根本的に関係してくる。 外積代数(がいせきだいすう、exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、Grassmann algebra)としても知られ、与えられた体 上のベクトル空間 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 形式的には、外積代数は あるいは で表され、 を線型部分空間として含む、楔積あるいは外積と呼ばれる で表される乗法を持つ、体 上の単位的結合代数である。楔積は結合的で双線型な乗法 であり、本質的な性質として 上の交代性 を持つものである。これは以下の性質 をも特別の場合として含む。 圏論の言葉で言えば、外積代数は普遍構成によって与えられる、ベクトル空間の圏上の函手の典型である。この普遍構成によって、体上のベクトル空間だけに限らず、可換環上の加群やもっとほかの興味ある構造にたいしても外積代数を定義することができる。外積代数は双代数のひとつの例である。つまり、外積代数の(ベクトル空間としての)双対空間にも乗法が定義され、その双対的な乗法が楔積と両立する。この双対代数は特に 上の重線型形式全体の成す多元環で、外積代数とその双対代数との双対性は内積によって与えられる。.

新しい!!: 可換環と外積代数 · 続きを見る »

実二次正方行列

数学、特に線型代数学において、実数体上の二次正方行列環(にじせいほうぎょうれつかん)、すなわち実数を成分にとる 行列(2 real matrix; 二行二列実行列)の全体の成す集合 は、成分ごとに定義される (および の行と の列の点乗積から構成される行列の積 を持ち、対合 が に対して と置くことによって定まる。ここで を 単位行列として (この実数 を の行列式という)が成り立ち、従って ならば は正則行列で、その逆行列が で与えられる。このような正則行列全体の成す集合は一般線型群 である。抽象代数学の言葉を用いれば、集合 は付随する加法および乗法に関して環を成し、 はその単元群である。また は実数体上四次元のベクトル空間でもあり、結局実数体上の結合多元環として理解できる。 はの全体と環同型になるが、その平面部分環族 (profile) は異なる。 各 実行列 は二次元の数ベクトル空間からそれ自身への線型写像 \beginax + by \\ cx + dy\end と一対一対応する。.

新しい!!: 可換環と実二次正方行列 · 続きを見る »

完備化 (環論)

抽象代数学において、完備化(かんびか、completion)とは、環や加群上の関手であって、完備な位相環や加群になるような任意のものである。完備化は局所化と類似しており、これらは可換環を解析する最も基本的な手法である。完備可換環は一般の環よりも単純な構造をもっており、が適用される。 \hat M defined in a way analogous to the completion of a metric space using Cauchy sequences.

新しい!!: 可換環と完備化 (環論) · 続きを見る »

対合環

数学、特に抽象代数学における対合環(ついごうかん、involutory ring)、-環(スターかん、∗-ring)記法について: 対合 は後置により表される単項演算で、そのグリフはミーンライン付近やや上方に中心がくるように右肩にのせて のように書くが、"" のように中心がミーンライン上にくるようにはしない(スター記号 * とスター演算記号 ∗ との混同に注意: アスタリスクの項も参照)。あるいは対合付き環(ついごうつきかん、involution)は、環構造と両立する対合(共軛演算、随伴)を備える代数系である。可換 -環 上の結合多元環 がそれ自身 -環でもあるとき、二つの -環の -構造が両立するならば、 を -環 上の 対合多元環(ついごうたげんかん、involutive algebra; 対合代数)、-多元環(スターたげんかん、∗-algebra; -代数)あるいは対合付き多元環(ついごうつきたげんかん、algebra with involution; 対合つき代数)という。 対合環における対合(-演算)は複素数体における複素共軛を一般化するものであり、また対合多元環における対合は複素行列環における共軛転置あるいはヒルベルト空間上の線型作用素のエルミート共軛を一般化するものである。.

新しい!!: 可換環と対合環 · 続きを見る »

対称代数

数学において、体 K 上のベクトル空間 V 上で定義される対称代数(たいしょうだいすう、symmetric algebra)S(V) あるいは Sym(V) は、V を含む K 上の自由可換単位的結合代数である。 対称代数の元は、座標の取り方に依らず V の元を不定元とする多項式に対応する。このとき、対称代数の双対 S(V&lowast) の元は V 上の多項式(函数)に対応する。 対称代数と V 上の対称テンソル空間とを混同してはならない。.

新しい!!: 可換環と対称代数 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 可換環と射 (圏論) · 続きを見る »

局所定数関数

数学において、位相空間 A から集合 B への写像 f が局所定数(きょくしょていすう、locally constant)とは、すべての a ∈ A に対して、a のある近傍 U が存在して、f が U 上定数となることである。.

新しい!!: 可換環と局所定数関数 · 続きを見る »

局所コンパクト空間

数学において、位相空間 が局所コンパクト(きょくしょコンパクト、)というのは、雑に言って、 の各点の近傍ではコンパクトであるという性質をもつことである。位相空間がコンパクトであるための条件は非常に厳しく、コンパクトな空間が数学において特殊な位置を占めているのに対して、数学で扱う重要な位相空間の多くが局所コンパクトである。特に局所コンパクトなハウスドルフ空間は数学の中で重要な位置を占める。.

新しい!!: 可換環と局所コンパクト空間 · 続きを見る »

局所環付き空間

数学における局所環付き空間(きょくしょかんつきくうかん、locally ringed space)とは、位相構造や正則構造といった数学的構造を反映する「関数のなす可換環」の層(考えている空間の構造層と呼ばれる)を付与された位相空間のことである。関数 が点 で消えていないとき、 のごく近くでは逆数関数 を考えられることが公理化される。.

新しい!!: 可換環と局所環付き空間 · 続きを見る »

巡回群

群論における巡回群(じゅんかいぐん、cyclic group、monogenous group)とは、ただ一つの元で生成される群(単項生成群)のことである。ここで群が「ただ一つの元で生成される」というのは、その群の適当な元 g をとれば、その群のどの元も(群が乗法的に書かれている場合は)g の整数冪として(群が加法的に書かれている場合は g の整数倍として)表されるということであり、このような元 g はこの群の生成元 (generator) あるいは原始元 (primitive) と呼ばれる。.

新しい!!: 可換環と巡回群 · 続きを見る »

両側加群

抽象代数学において、両側加群(りょうがわかぐん、bimodule)とは、アーベル群であって、左加群かつ右加群であり、左右の積が両立しているようなもののことである。数学の多くの部分で自然に現れることに加えて、左右の加群の関係の多くは両側加群の用語によって簡潔に表現される。.

新しい!!: 可換環と両側加群 · 続きを見る »

中山の補題

数学、具体的には現代代数学や可換環論において、中山の補題(なかやまのほだい、Nakayama's lemma、クルル-東屋の定理(Krull–Azumaya theorem)とも)は、環(典型的には可換環)のジャコブソン根基とその有限生成加群の間の相互関係を定める。有り体には、補題より直ちに可換環上の有限生成加群は体上のベクトル空間のように振る舞うことが言える。これは代数幾何において重要な道具である、なぜならばそれによって代数多様体の局所的なデータを、局所環上の加群の形において、環の剰余体上のベクトル空間として各点ごとに研究することができるからである。 この補題は、まずヴォルフガンク・クルルによって可換環のイデアルの特殊な場合において発見され、次に一般の場合が によって発見されたにも関わらず、日本人数学者中山正にちなんで名づけられている。可換の場合には、補題はケイリー・ハミルトンの定理を一般化した形の単純な帰結であり、これは に書かれている。非可換なときの右イデアルに対する補題の特別な場合は にあり、そのため非可換な中山の補題はジャコブソン-東屋の定理 (Jacobson–Azumaya theorem) と呼ばれることもある。後者はジャコブソン根基の理論にたくさんの応用をもっている。.

新しい!!: 可換環と中山の補題 · 続きを見る »

中心 (代数学)

数学の分野である代数学において、多元環や群などの中心 (center, Zentrum) は考えている構造の部分集合であって、乗法に関してすべての元と交換する元全体からなる。.

新しい!!: 可換環と中心 (代数学) · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: 可換環と主イデアル · 続きを見る »

一般ガウス・ボネの定理

一般ガウス・ボネの定理(generalized Gauss–Bonnet theorem)(チャーン・ガウス・ボネの定理とも呼ばれる)は、偶数次元の閉リーマン多様体のオイラー特性数を曲率から導かれるある多項式の積分として表す定理である。 M を境界のないコンパクトな向き付け可能な 2n 次元リーマン多様体とし、Ω をレヴィ・チヴィタ接続の曲率形式とする。これは、Ω が M 上の \mathfrak s\mathfrak o(2n) に値を持つ 2-形式であることを意味する。そのために、Ω は成分が 2-形式である反対称 2n × 2n 行列であるので、可換環 \wedge^\,T^*M 上の行列である。従って、2n-形式を成分にもつパフィアン Pf(Ω) をとることができる。この状況で一般ガウス・ボネの定理は となる。ここで χ(M) は、M のオイラー数を表す。この定理は、ガウス・ボネの定理の高次元化である。.

新しい!!: 可換環と一般ガウス・ボネの定理 · 続きを見る »

一次分数変換

数学の特に複素解析における一次分数変換(いちじぶんすうへんかん、linear fractional transformation)は、複素数体 上の射影直線 に対する射影変換であるメビウス変換を指す用語として用いられる。より一般の数学的文脈において、複素数体 はもっと別の環 に取り換えることができる。この場合の一次分数変換は、環 上の射影直線 上の射影変換の意味である。 が可換環ならば、一次分数変換はよく知られた形 として書き表すことができるが、非可換の場合には右辺の点の座標をで と書くのが自然である。射影空間上の斉次座標の同値性に従えば、( が単元であるとき) が成り立つことに注意する。.

新しい!!: 可換環と一次分数変換 · 続きを見る »

一次関数

y-切片を持つ。 数学、特に初等解析学における(狭義の)一次関数(いちじかんすう、linear function)は、(の)一次()、つまり次数 の多項式が定める関数 をいう。ここで、係数 は に依存しない定数であり、矢印は各値 に対して を対応させる関数であることを意味する。特に解析幾何学において、係数および定義域は実数の範囲で扱われ、その場合一次関数のグラフは平面直線である。 より広義には、係数や定義域として複素数やその他の環を考えたり、多変数の一次多項式函数や、あるいは一次式をベクトル空間や作用を持つ加群の文脈で理解することもある。 一次関数は線型関数( の直訳)やアフィン関数 とも呼ばれ、この場合しばしば定数関数 も含む。ベクトルを変数とする広義の一次関数はアフィン写像と呼ばれ、これはベクトルにベクトルを対応させる写像であるが、ふつう線型写像はその特別な場合 で斉一次函数で与えられる。 以下、解析幾何学における実函数としての一次函数について述べる。.

新しい!!: 可換環と一次関数 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 可換環と一意分解環 · 続きを見る »

平方根

平方根(へいほうこん、square root)とは、数に対して、平方すると元の値に等しくなる数のことである。与えられた数を面積とする正方形を考えるとき、その数の平方根の絶対値がその一辺の長さであり、一つの幾何学的意味付けができる。また、単位長さと任意の長さ x が与えられたとき、長さ x の平方根を定規とコンパスを用いて作図することができる。二乗根(にじょうこん)、自乗根(じじょうこん)とも言う。.

新しい!!: 可換環と平方根 · 続きを見る »

二年生の夢

数学において二年生の夢(にねんせいのゆめ、)とは、1697年に数学者ヨハン・ベルヌーイが発見した以下の恒等式(特に1つ目)を指すときの名称として用いられる。 \int_0^1 \frac \,\mathrmx &.

新しい!!: 可換環と二年生の夢 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: 可換環と二項定理 · 続きを見る »

二項係数

数学における二項係数(にこうけいすう、binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は二つの非負整数で添字付けられ、添字 を持つ二項係数はふつう \tbinom と書かれる(これは二項冪 の展開における の項の係数である。適当な状況の下で、この係数の値は \tfrac で与えられる)。二項係数を、連続する整数 に対する各行に を から まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。-元集合から -個の元を(その順番を無視して)選ぶ方法が \tbinom nk 通りである。二項係数の性質を用いて、記号 \tbinom nk の意味を、もともとの および が なる非負整数であった場合を超えて拡張することが可能で、そのような場合もやはり二項係数と称する。.

新しい!!: 可換環と二項係数 · 続きを見る »

二重数

数学、特に線型代数学における二重数(にじゅうすう、dual numbers)は、実数の全体に実数ではない新しい元 ε で複零性 ε2.

新しい!!: 可換環と二重数 · 続きを見る »

二次形式

数学における二次形式(にじけいしき、quadratic form) は、いくつかの変数に関する次数が 2 の斉次多項式である。たとえば は変数 x, y に関する二次形式である。 二次形式は数学のいろいろな分野(数論、線型代数学、群論(直交群)、微分幾何学(リーマン計量)、微分位相幾何学(四次元多様体の交叉形式)、リー理論(キリング形式)など)で中心的な位置を占める概念である。.

新しい!!: 可換環と二次形式 · 続きを見る »

代数のテンソル積

数学において、二つの R-代数(多元環)のテンソル積には再び -代数の構造を入れることができ、代数のテンソル積 (tensor product of algebras) あるいはテンソル積多元環と呼ばれる対象が得られる。任意の環は -代数と見ることができるから、 と取った特別の場合として環のテンソル積 (tensor product of rings) が定まる。.

新しい!!: 可換環と代数のテンソル積 · 続きを見る »

代数的K理論

数学では、代数的K-理論(algebraic K-theory)は、ある非負な整数 n に対して環からアーベル群への函手の系列 を定義して適用することに関係したホモロジー代数の重要な一部である。歴史的理由により、低次 K-群 K0 と K1 は、n ≥ 2 に対する高次 K-群 Kn とはいくらか異なった項と考えられている。実際、高次の群よりも低次の群は受け入れやすく、より多くの応用を持っている。高次の群の理論は、( R が整数の環であるときでさえ)非常に深く、計算することが確かに困難である。 群 K0(R) は、射影加群を使い、環のイデアル類群の構成を一般化したことになる。1960年代、1970年代の発展は、現在は(Quillen–Suslin theorem)となっている射影加群についてのジャン=ピエール・セール(Jean-Pierre Serre)の予想を解こうとした努力に関係していた。キレン・サスリンの定理は、この分野で発見された古典的代数の他の問題に多く関連している。同じように、K1(R) は、行列の基本変形を使った環の可逆元の群の変形である。群 K1(R) はトポロジー、特に、R が群環のときに重要である。なぜなら、その商である(Whitehead group)が、(simple homotopy theory)や(surgery theory)の理論における問題を研究するためのホワイトヘッドの捩れを含んでいるからである。群 K0(R) もたとえば有限性不変量のような他の不変量を含んでいる。1980年代以降、代数的K-理論は、ますます代数幾何学へ多くの応用が増加している。たとえば、(motivic cohomology)は密接に代数的K-理論に関係している。 n(R) of functors from rings to abelian groups, for all nonnegative integers n. For historical reasons, the lower K-groups K0 and K1 are thought of in somewhat different terms from the higher algebraic K-groups Kn for n ≥ 2.

新しい!!: 可換環と代数的K理論 · 続きを見る »

位相的場の理論

位相的場の理論(いそうてきばのりろん)もしくは位相場理論(いそうばりろん)あるいはは、を計算する場の量子論である。 TQFTは物理学者により開拓されたにもかかわらず、数学的にも興味を持たれていて、結び目理論や代数トポロジーの 4次元多様体の理論や代数幾何学のモジュライ空間の理論という他のものにも関係している。サイモン・ドナルドソン, ヴォーン・ジョーンズ, エドワード・ウィッテン, や マキシム・コンツェビッチ は皆、フィールズ賞 をとり、位相的場の理論に関連した仕事を行っている。 物性物理学では、位相的場の理論は、分数量子ホール効果や、凝縮状態や他の状態のような、の低エネルギー有効理論である。.

新しい!!: 可換環と位相的場の理論 · 続きを見る »

形式的冪級数

数学において、形式的冪級数(けいしきてきべききゅうすう、formal power series)とは、(形式的)多項式の一般化であり、多項式が有限個の項しか持たないのに対し、形式的冪級数は項が有限個でなくてもよい。例えば、( を不定元として) は(多項式ではない)冪級数である。.

新しい!!: 可換環と形式的冪級数 · 続きを見る »

体上の多元環

数学において体上の代数あるいは多元環(たげんかん、algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるとを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。.

新しい!!: 可換環と体上の多元環 · 続きを見る »

体上有限生成環の理論

体上有限生成環 (たいじょうゆうげんせいせいかん; finitely generated ring over a field)とは、ある(可環な)体 k 上有限個の元で生成される可換環の事を言う。k 上の多項式環 k の剰余環として得られる環といっても同じである。体上有限生成環は、可換環論的見地からはネーター環の重要な例でありヴォルフガング・クルルらによるネーター環のイデアル論のひな形であった。また体上有限生成環の理論は代数幾何学におけるアフィン代数多様体の理論、すなわち、代数多様体の局所理論と本質的に等価である点からも重要である。本項では、ネーターの正規化補題 (Noether normalization lemma)、有限生成整域の次元論、ヒルベルトの零点定理 (Hilbert's Nullstellensatz) について説明する。.

新しい!!: 可換環と体上有限生成環の理論 · 続きを見る »

微分小

初等解析学(微分積分学)において、differential)の語は、適当な変量に関する無限小変分を指すために用いられる。例えば、変数 に対してその増分(変分)はしばしば と書かれるが、変数 に関する無限に小さな増分を表すのに が用いられる。無限小変分(微分小)の概念は直観的な議論においてきわめて有効であり、またその数学的に意味のある定式化にはいくつもの方法が存在する。 初等解析学において、さまざまな変数に関する無限小変分の間の関係性を微分商を用いて述べることができる。 が の函数であるとき、 の微分 は との間に等式 を通じて関係を持つ。ここに は の に関する微分商である。 この式は「 に関する の微分商とは差分商 の を無限小に近づけた極限である」という直観的な考えをまとめたものである。 微分小量の概念を数学的に明確にする方法には、例えば以下のようなものが考えられる:.

新しい!!: 可換環と微分小 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 可換環と微分作用素 · 続きを見る »

係数環の変更

代数学において,環準同型 が与えられると,加群の係数環を変更する3つの方法がある;すなわち,右 -加群 と右 -加群 に対し,.

新しい!!: 可換環と係数環の変更 · 続きを見る »

包含写像

A の上位集合である。 数学における包含写像(ほうがんしゃぞう、)または標準単射 は、 を の部分集合とするとき、 の各元 を の元として扱う写像 のことを言う。写像の矢印の部分に「鉤付き矢印」 を用いることで が包含写像であることを意味することがある。 包含写像(およびそれに類するからの単射)はしばしば、自然な単射 とも呼ばれる。 二つの対象 と の間の任意の射 が与えられたとき、域 の中への包含写像射 が存在するならば、 の制限を射の合成 によってつくることができる。多くの例において、 の値域と呼ばれる余域への標準的包含射 も構成できる。.

新しい!!: 可換環と包含写像 · 続きを見る »

ネーター加群

抽象代数学においてネーター加群(Noetherian module) とは、部分加群について昇鎖条件を満たす加群のことである。ただし、部分加群には集合の包含関係で順序を入れる。 歴史的には、ヒルベルトが有限生成部分加群の性質を研究した最初の数学者である。彼はヒルベルトの基底定理として知られている重要な定理を証明した。この定理は、任意の体上の多変数多項式環の任意のイデアルが有限生成であることを述べている。しかしながら、この性質はその重要性を初めて認識したエミー・ネーターにちなんで名づけられている。.

新しい!!: 可換環とネーター加群 · 続きを見る »

ハメル次元

数学における、ベクトル空間の次元(じげん、dimension)とは、その基底の濃度、すなわち基底に属するベクトルの個数)である。 他の種類の次元との区別のため、ハメル次元または代数次元と呼ばれることもある。この定義は「任意のベクトル空間は(選択公理を仮定すれば)基底を持つ」ことと「一つのベクトル空間の基底は、どの二つも必ず同じ濃度を持つ」という二つの事実に依存しており、これらの事実の結果として、ベクトル空間の次元は空間に対して一意的に定まる。体 F 上のベクトル空間 V の次元を dimF(V) あるいは で表す(文脈から基礎とする体 F が明らかならば単に dim(V) と書く)。 ベクトル空間 V が有限次元であるとは、その次元が有限値であるときにいう。.

新しい!!: 可換環とハメル次元 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: 可換環とハウスドルフ空間 · 続きを見る »

モノイド対象

圏論において、モノイド対象(モノイドたいしょう、monoid object) は、モノイド圏 が与えられたとき、 の対象 および二つの射(乗法: および単位射: の組を言う。ただし二つの射はそれぞれ、五角形図式 積の結合律 および単位子図式 単位律 を可換にするものでなければならない。上記の図式に現れる記号について、 はモノイド圏 の に対する(自然同型を除く)単位元であり、三つの射 はそれぞれ における(自然同型を除く)結合律、左単位律、右単位律を与える射である。 モノイド圏 におけるモノイド対象のことを、単にその圏の(内部)モノイドとも呼ぶ。これと双対的に、モノイド圏 の余モノイド対象 (comonoid) は双対圏 のモノイド対象を言う。 モノイド圏 が(すなわち、自然同型を除く対称律を定める射 を持つ)ならば、 のモノイド対象 が可換 (commutative) とは となることを言う。.

新しい!!: 可換環とモノイド対象 · 続きを見る »

モノイド圏

数学におけるモノイド圏(モノイドけん、monoidal category; モノイド的圏、モノイダル圏)あるいはテンソル圏(テンソルけん、tensor category)は、(自然同型の違いを除いて結合的な と、 について(再び自然同型の違いを除いて)左および右単位元となる対象 を備えた圏 である。この圏における自然同型は、関連する全ての図式を可換にすることを保証した(一貫性条件、整合条件)に従わなければならない。したがって、モノイド圏は抽象代数におけるモノイドの圏論的な緩い類似物である。 ベクトル空間、アーベル群、-加群、-多元環などの間に定義される通常のテンソル積は、それぞれの概念に付随する圏にモノイド構造を与える。ゆえにモノイド圏をこれら、あるいは他の例の一般化として見ることもできる。 圏論において、モノイド圏はモノイド対象の概念とそれに付随する作用を定義する。また、豊穣圏を定義する際にも使われる。 モノイド圏は圏論以外の分野において多数の応用を持つ。直観的線型論理の multiplicative fragment のモデルを定義し、物性物理学においてトポロジカル秩序相の数学的な基盤を与え、は場の量子論やひも理論に応用をもつ。.

新しい!!: 可換環とモノイド圏 · 続きを見る »

ユークリッドの補題

ユークリッドの補題(ユークリッドのほだい、Euclid's lemma)またはユークリッドの第一定理(ユークリッドのだいいちていり、Euclid's first theorem)とは素数に関する次の基本的な性質について述べた補題である: たとえば、、、 の場合、 について、 は で割り切れるので、ユークリッドの補題から, の少なくとも一方は で割り切ることができる。実際、 であり は で割り切れる。 この性質は整数論の基本定理を証明する鍵となる一般に、域が一意分解整域であることを示すことは、ユークリッドの補題と (ACCP) を導くには充分である。。これは素元、すなわち任意の可換環における一般化された素数の定義に用いられる。 ユークリッドの補題は合成数に対しては成り立たない。 たとえば、、、 の場合、合成数 は積 を割り切るにもかかわらず、 は を割り切れないし も割り切ることができない。 ユークリッドの補題の名は、古代ギリシアの数学者アレクサンドリアのエウクレイデスの著作『原論』第7巻の命題30で示されたことによる。.

新しい!!: 可換環とユークリッドの補題 · 続きを見る »

ユニモジュラ行列

数学の分野において、ある正方行列 M がユニモジュラ行列(ユニモジュラぎょうれつ、; 単模行列)であるとは、それが整数行列で、その行列式が +1 あるいは −1 であることを言う。また同値であるが、整数について可逆であるような整数行列、すなわち、逆行列 N が整数行列であるような整数行列のことも、ユニモジュラ行列と言う。これら二つの定義が同値であることは、クラメルの公式より従う。したがって、いずれの成分も整数であるような行列 M とベクトル b に対する方程式 Mx.

新しい!!: 可換環とユニモジュラ行列 · 続きを見る »

リー代数

数学において、リー代数、もしくはリー環日本語ではしばしば Lie algebra のことをリー環と呼ぶが、後述の Lie ring はより一般的な概念である。本項ではこの2つの用語を区別して用いる。は、「リー括弧積」(リーブラケット、Lie bracket)と呼ばれる非結合的な乗法 を備えたベクトル空間である。 の概念を研究するために導入された。"Lie algebra" という言葉は、ソフス・リーに因んで、1930年代にヘルマン・ワイルにより導入された。古い文献では、無限小群 (infinitesimal group) という言葉も使われている。 リー代数はリー群と密接な関係にある。リー群とは群でも滑らかな多様体でもあるようなもので、積と逆元を取る群演算がであるようなものである。任意のリー群からリー代数が生じる。逆に、実数あるいは複素数上の任意の有限次元リー代数に対し、対応する連結リー群がによる違いを除いて一意的に存在する()。このによってリー群をリー代数によって研究することができる。.

新しい!!: 可換環とリー代数 · 続きを見る »

ブラーマグプタの二平方恒等式

ブラーマグプタの二平方恒等式(ブラーマグプタのにへいほうこうとうしき)とは、二つの平方数の和で表される二つの数の積が、二つの平方数の和で表せることを示す恒等式である。言い換えれば、二つの平方数の和は乗算に関して閉じているということである。この恒等式はにおける特別な場合である。 正確には、次のように表される。 \left(a^2 + b^2\right)\left(c^2 + d^2\right) &.

新しい!!: 可換環とブラーマグプタの二平方恒等式 · 続きを見る »

ブラウアー群

数学において、体 に対するブラウアーの多元環類群(たげんかんるい、algebra class group)あるいは単に のブラウアー群(ブラウアーぐん、Brauer group) は、体 上の中心的単純環の森田同値類(多元環類、ブラウアー類)を元とするアーベル群で、その演算は多元環のテンソル積から誘導される。ブラウアー群は体上の斜体の分類の過程で考え出されたもので、名称は代数学者のリチャード・ブラウアーに由来する。さらに一般に、スキームのブラウアー群の概念も東屋多元環(東屋代数)を用いて定義される。.

新しい!!: 可換環とブラウアー群 · 続きを見る »

ヒルベルト–ポワンカレ級数

数学、とくに代数学の分野において、ヒルベルト–ポワンカレ級数 (Hilbert–Poincaré series)(と呼ばれることもある)は、次数付き代数的構造の文脈に次元の概念を適応したものである(構造全体はしばしば無限次元である)。ダヴィット・ヒルベルト (David Hilbert) とアンリ・ポワンカレ (Henri Poincaré) にちなんで名づけられている。ヒルベルト–ポワンカレ級数は、一不定元( とする)の形式的冪級数であり、 の係数が 次斉次元全体のなす部分構造の次元(あるいは階数)で与えられる。ヒルベルト–ポワンカレ級数は、ヒルベルト多項式が存在するときこれと密接に関係する。しかしながら、ヒルベルト–ポワンカレ級数はすべての次数において階数を記述する一方、ヒルベルト多項式は有限個を除くすべての次数でしか記述せず、したがって与えてくれる情報が少ない。とくに、ヒルベルト–ポワンカレ級数は、ヒルベルト多項式が存在するときでさえ後者から導くことができない。良い場合には、ヒルベルト–ポワンカレ級数は変数 の有理関数として表せる。.

新しい!!: 可換環とヒルベルト–ポワンカレ級数 · 続きを見る »

ビネ・コーシーの恒等式

代数学におけるビネ・コーシーの恒等式 (びね・こーしーのこうとうしき、Binet–Cauchy identity)とは、および オーギュスタン=ルイ・コーシーに由来する以下の恒等式 \begin \left(\sum_^n a_i c_i\right) \left(\sum_^n b_j d_j\right) &.

新しい!!: 可換環とビネ・コーシーの恒等式 · 続きを見る »

テンソルの縮約

多重線型代数学におけるテンソルの縮約(テンソルのしゅくやく、tensor contraction)は、有限次元のベクトル空間とその双対空間の間の自然な内積から生じる、一つ以上のテンソルに対する演算である。座標を取って考えれば、一つの式に現れる各々の仮添字 (dummy index) の対に対して和の規約を適用することによって生じる、スカラー成分の積和として縮約は表される。特に一つのの縮約は、そのテンソルに現れる見かけの添字の対(一方は上付き、他方は下付き)が同じ文字であるとき、それらに関して和をとることで生じる。アインシュタインの縮約記法とは、このような和を織り込み済みとする記法である。縮約を取って得られるテンソルは階数 (order) が だけ減る 。 テンソルの縮約をトレースの一般化として捉えることもできる。.

新しい!!: 可換環とテンソルの縮約 · 続きを見る »

テンソル代数

数学におけるベクトル空間 上のテンソル代数(テンソルだいすう、tensor algebra) または は 上の任意階のテンソル全体がテンソル積を乗法として成す体上の多元環である。これは多元環をベクトル空間とみなすの左随伴となるという意味において 上の自由多元環、すなわち普遍性を満たすという意味で を含む多元環として「最も一般」のものである。 テンソル代数はまた二種類の余代数構造を持つ。一つは簡素で双代数を定めないが、もう一つはより複雑なもので双代数を導き、さらに対蹠射を以ってホップ代数へ拡張することができる。; 注意: 本項において多元環(代数)は単位的かつ結合的なものと仮定する。.

新しい!!: 可換環とテンソル代数 · 続きを見る »

フロベニウス多元環

フロベニウス多元環(フロベニウスたげんかん、Frobenius algebra)、あるいはフロベニウス代数とは、数学の表現論や加群論において有限次元な単位的結合多元環のうち、良い双対理論を与える特別な双線型形式を持つものをいう。 フロベニウス多元環は1930年代に Brauer と Nesbitt によって有限群のモジュラー表現の一般化として研究され始め、Frobenius にちなんで名づけられた。中山は および特に において豊かな双対理論を初めて発見した。デュドネはこれを用いて においてフロベニウス多元環を特徴づけ、フロベニウス多元環のこの性質を perfect duality と呼んだ。フロベニウス多元環は準フロベニウス環(右正則表現が移入的なネーター環)へと一般化された。最近では、フロベニウス多元環への関心は、位相的場の理論との関連からも高まっている。 体上の有限次元多元環に対しては以下のようなクラスの階層がある。.

新しい!!: 可換環とフロベニウス多元環 · 続きを見る »

フロベニウス自己準同型

可換環論や体論では、フロベニウス自己準同型 (フロベニウス写像、Frobenius endomorphism, Frobenius map) (フェルディナント・ゲオルク・フロベニウスの名前にちなむ)は、有限体を含む重要なクラスである素数の標数 をもつ可換環の特別な自己準同型のことを言う。この自己準同型写像は、各元を 乗する。ある文脈においては、自己同型となるが、一般にこれは正しくない。.

新しい!!: 可換環とフロベニウス自己準同型 · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: 可換環とホモロジー代数学 · 続きを見る »

ホップ代数

数学において,ホップ代数(ホップだいすう,Hopf algebra)は,に因んで名づけられた代数的構造であり,同時に(単位的結合)代数かつ(余単位的余結合的)余代数であり,これらの構造の整合性により双代数になっており,さらにある性質を満たすを備えたものである.ホップ代数の表現論は特に見事である,なぜならば整合的な余積,余単位射,対合射の存在により,表現のテンソル積,自明表現,双対表現を構成できるからである. ホップ代数は,その起源であり の概念と関係する代数的位相幾何学,の理論,群論(群環の概念によって),そして多数の他の場所で,自然に生じ,おそらく双代数の最もよく知られた種類となっている.ホップ代数はそれ自身も研究されていて,一方では例の特定のクラスが,他方では分類問題が,多く研究されている.それらは物性物理学や量子的場の理論から弦理論まで多様な応用を持つ. 定理 (ホップ) を標数 0 の体上の有限次元次数付き余可換ホップ代数とする.このとき は(代数として)奇数次の生成元による自由外積代数である..

新しい!!: 可換環とホップ代数 · 続きを見る »

ホプキンス・レヴィツキの定理

抽象代数学の一分野である環論において、秋月・ホプキンス・レヴィツキの定理 (Akizuki–Hopkins–Levitzki theorem) は半準素環上の加群において降鎖条件と昇鎖条件を結び付ける。(1を持つ)環 は、 が半単純でありかつ が冪零イデアルであるときに、半準素環 (semiprimary ring) と呼ばれる。ここで はジャコブソン根基である。定理の主張は、 が半準素環で が -加群ならば、加群についての3つの条件、ネーター的、アルティン的、「組成列を持つ」、が同値であるというものである。半準素という条件がなければ、 が組成列を持てば はネーターかつアルティンであるということしか言えない。 Charles Hopkins の論文と の論文(ともに1939年)から定理は現在の形となった。そのためしばしばホプキンス・レヴィツキの定理 (Hopkins–Levitzki theorem) と呼ばれる。しかしながら、秋月康夫を含めることがある。数年早く可換環に対して結果を証明したからだ。 右アルティン環は半準素であることが知られているから、定理の直接の系として、右アルティン環は右ネーター環でもある。同様の主張は左アルティン環に対しても成り立つ。これはアルティン加群に対しては一般には正しくない。ネーター的でないアルティン加群の例が存在するからである。 別の直接の系として、 が右アルティン環であるとき、 が左アルティン環であることと左ネーター環であることは同値である。.

新しい!!: 可換環とホプキンス・レヴィツキの定理 · 続きを見る »

ベクトル空間の双対系

数学の函数解析学周辺分野におけるベクトル空間の双対系(そうついけい、dual system)あるいは双対組 (dual pair; 双対対) は、付随する双線型形式(内積, pairing)を持つようなベクトル空間の対である。 ノルム線型空間の研究においてよく用いられる函数解析学的方法に、もとの空間とその連続的双対空間、すなわちもとの空間上の連続線型形式全体の成すベクトル空間との関係性を調べるというものがある。双対対はこのような双対性の概念を一般化して、素性の良い双線型形式によって「双対性」が与えられる任意のベクトル空間の対を考えるものである。付随する双線型形式を用いて、半ノルムから極位相を定めると、ベクトル空間は局所凸空間(ノルム空間の一般化)になる。.

新しい!!: 可換環とベクトル空間の双対系 · 続きを見る »

判別式

代数学において、多項式の判別式(はんべつしき、discriminant)はその係数たちの関数であり、一般には大文字の 'D' あるいは大文字のギリシャ文字デルタ (Δ) で表記される。それは根の性質についての情報を与えてくれる。例えば、二次多項式 の判別式は である。ここで、実数,, に対して、Δ > 0 であれば、多項式は 2 つの実根を持ち、Δ.

新しい!!: 可換環と判別式 · 続きを見る »

列空間

数学の線型代数学の分野において、ある行列 A の列空間(れつくうかん、)C(A)(しばしば、行列の値域(range)とも呼ばれる) とは、その行列の列ベクトルの線型結合としてあり得るすべてのものからなる集合のことを言う。 K を(実数あるいは複素数全体のような)体とする。K の成分からなる、ある m × n 行列の列空間は、m-空間 Km の線型部分空間である。列空間の次元は、その行列の階数と呼ばれる。(整数全体のような)環 K についての行列に対しても、同様に列空間を定義することが出来る。 ある行列の列空間は、対応する遷移行列の像あるいは値域である。.

新しい!!: 可換環と列空間 · 続きを見る »

分解型複素数

線型代数学における分解型複素数(ぶんかいがたふくそすう、split-complex number; 分裂複素数)とは、二つの実数 x, y と j2.

新しい!!: 可換環と分解型複素数 · 続きを見る »

分配多元環

数学における分配多元環(ぶんぱいたげんかん、distributive algebra)または非結合多元環(ひけつごうたげんかん、non-associative algebra)は、体(または可換環)K 上の線型空間(あるいは一般に加群)A であって、さらにその上のK-双線型写像 A × A → A が存在して A 上に乗法演算(中置的二項演算)を定めるものを言う。いま、乗法の結合性については全く仮定しないので、乗法を行う順番については丸括弧などを用いて指定することが非常に重要になる。例えば (ab)(cd) や (a(bc))d あるいは a(b(cd)) などは異なる値を取り得る。 ここで、結合性を仮定しないことを以って「非結合的」という言い方をするけれども、それは結合律が成立しないことを意味するものではない。言ってみれば、「非結合的」という修飾辞は「必ずしも結合的でない」という意味であって、これは非可換環が「必ずしも可換でない」という意味で「非可換」を冠しているのとまさに同じである。 A の元を左または右から掛けるという操作は、A の K-線型変換 を引き起こす(La および Ra をそれぞれ a による左移動および右移動作用と呼ぶ)。分配多元環 A の包絡環 (enveloping algebra) とは、A の自己準同型環の部分環で、A の左移動および右移動によって生成されるものを言う。この包絡環は、A が結合的でない場合でも、必ず結合的になる。この意味で、包絡環は「A を含む最小の結合多元環」である。 多元環が単型あるいは単位的 (unital, unitary) であるとは、それが乗法単位元(Ix.

新しい!!: 可換環と分配多元環 · 続きを見る »

分数

分数(ぶんすう、fraction)とは 2 つの数の比を用いた数の表現方法のひとつである。.

新しい!!: 可換環と分数 · 続きを見る »

アルティン環

アルティン環(アルティンかん、Artinian ring、アルチン環とも)とは、降鎖条件から定まるある種の有限性をもった環のこと。名称はエミール・アルティンにちなむ。.

新しい!!: 可換環とアルティン環 · 続きを見る »

アーベル群

数学、とくに抽象代数学におけるアーベル群(アーベルぐん、abelian group)または可換群(かかんぐん、commutative group)は、群演算が可換な群、すなわちどの二つの元の積も掛ける順番に依らず定まる群を言う。名称は、ノルウェーの数学者ニールス・アーベルに因む。 アーベル群は環や体、環上の加群やベクトル空間といった抽象代数学の概念において、その基礎となる加法に関する群(加法群)としてしばしば生じる。任意の抽象アーベル群についても、しばしば加法的な記法(例えば群演算は "+" を用いて表され、逆元は負符号を元の前に付けることで表す)が用いられ、その場合に用語の濫用で「加法群」と呼ばれることがある。また任意のアーベル群は整数全体の成す環 上の加群とみることができ、その意味でやはり用語の濫用だがアーベル群のことを「加群」と呼ぶこともある。 一般に可換群はに比べて著しく容易であり、とくに有限アーベル群の構造は具さに知られているが、それでも無限アーベル群論はいまなお活発な研究領域である。.

新しい!!: 可換環とアーベル群 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: 可換環とイデアル (環論) · 続きを見る »

イデアルの根基

数学の一分野である可換環論において、イデアル I の根基(radical of an ideal)とは、イデアルであって、何乗かすれば I の元となるような元の集合である。根基イデアル(あるいは半素イデアル)とは、自分自身の根基と等しいようなイデアルのことである。(これは「根基化」と呼ばれるイデアルへの作用の固定点であるということもできる。)準素イデアルの根基は素イデアルである。 ここで定義された根基イデアルは半素環の記事において非可換環に一般化される。.

新しい!!: 可換環とイデアルの根基 · 続きを見る »

イデアル商

抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(ideal quotient) (I: J) とは集合 である。すると (I: J) も R のイデアルである。イデアル商は商と見ることができる、なぜならば IJ \subset K であることと I \subset K: J であることが同値だからだ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。 (I: J) はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。.

新しい!!: 可換環とイデアル商 · 続きを見る »

エミー・ネーター

アマーリエ・エミー・ネーター (Amalie Emmy Noether,; 1882年3月23日 - 1935年4月14日) はユダヤ系ドイツ人数学者であり、抽象代数学と理論物理学への絶大な貢献で有名である。ネーターは、パヴェル・アレクサンドロフ (Pavel Alexandrov)、アルベルト・アインシュタイン (Albert Einstein)、ジャン・ディュドネ (Jean Dieudonné)、ヘルマン・ヴァイル (Hermann Weyl)、ノーバート・ウィーナー (Norbert Wiener) によって、数学の歴史において最も重要な女性と評されている。彼女の時代の先導的数学者の一人として、彼女は環、体、多元環の理論を発展させた。物理学では、ネーターの定理は対称性と保存則の間の関係を説明する。 ネーターはエルランゲンのフランケン地方の町のユダヤの家系に生まれた。父は数学者のである。彼女はもともと、必要な試験を通った後フランス語と英語を教える予定だったが、そうしないで数学を彼女の父が講義しているエルランゲン大学で学んだ。 (Paul Gordan) の指導の下1907年に学位論文を完成させた後、彼女は7年間無給でエルランゲンの数学研究所で働いた。当時女性は大学の職から大きく遮断されていた。1915年、彼女はダフィット・ヒルベルト (David Hilbert) とフェリックス・クライン (Felix Klein) によってゲッチンゲン大学数学科、世界規模で有名な数学研究の中心、に招かれた。しかしながら、哲学的な教授陣は反対し、彼女は4年間をヒルベルトの名の下での講義に費やした。彼女の (大学教授資格試験)が1919年に承認され、彼女は Privatdozent (私講師)の地位を得ることができた。 ネーターは1933年までゲッチンゲン数学科の主導的一員だった。彼女の生徒は "Noether boys" と呼ばれることもあった。1924年、オランダ人数学者 は彼女の仲間に入り、すぐにネーターのアイデアの主導的解説者になった。彼女の仕事は彼の影響の大きい1931年の教科書 (現代代数学)の第二巻の基礎であった。1932年のチューリッヒでの国際数学者会議での彼女の plenary address (全員参加の講演)の時までには彼女の代数的な洞察力は世界中で認められていた。翌年、ドイツのナチ政府はユダヤ人を大学の職から解雇し、ネーターはアメリカに移ってペンシルヴァニアので職を得た。1935年、彼女は卵巣嚢腫の手術を受け、回復の兆しにもかかわらず、4日後53歳で亡くなった。 ネーターの数学的研究は3つの「時代」に分けられている。第一の時代 (1908–19)、彼女はと数体の理論に貢献した。変分法における微分不変量に関する彼女の仕事、ネーターの定理は、「現代物理学の発展を先導したこれまでに証明された最も重要な数学な定理の1つ」と呼ばれてきた。第二の時代 (1920–26)、彼女は「代数学の顔を変えた」仕事を始めた。彼女の高尚な論文 Idealtheorie in Ringbereichen (環のイデアル論, 1921) においてネーターは可換環のイデアルの理論を広範な応用を持つ道具へと発展させた。彼女は昇鎖条件を手際よく使った。それを満たす対象は彼女に敬意を表してと呼ばれる。第三の時代 (1927–35)、彼女は非可換代数と超複素数についての研究を出版し、群の表現論を加群とイデアルの理論と統合した。ネーターは自身の出版物に加え、自分の考えに惜しみなく、他の数学者によって出版されたいろいろな研究の功績が、代数的位相幾何学のような彼女の研究とはかけ離れた分野においてさえ、認められている。.

新しい!!: 可換環とエミー・ネーター · 続きを見る »

オイラーの四平方恒等式

数学において、オイラーの四平方恒等式 (Euler's four-square identity) とは、4つの平方数の和である2数の積は再び4つの平方数の和になることをいうものである。具体的は、次のようになる。.

新しい!!: 可換環とオイラーの四平方恒等式 · 続きを見る »

クラメルの公式

線型代数学におけるクラメルの法則あるいはクラメルの公式(クラメルのこうしき、Cramer's rule; クラメルの規則)は、未知数の数と方程式の本数が一致し、かつ一意的に解ける線型方程式系の解を明示的に書き表す行列式公式である。これは、方程式の解を正方係数行列とその各列ベクトルを一つずつ方程式の右辺のベクトルで置き換えて得られる行列の行列式で表すものになっている。名称はガブリエル・クラーメル (1704–1752) に因むもので、クラーメルは任意個の未知数に関する法則を1750年に記している。なお特別の場合に限れば、コリン・マクローリンが1748年に公表している(また、恐らくはそれを1729年ごろにはすでに知っていたと思われる)。.

新しい!!: 可換環とクラメルの公式 · 続きを見る »

クルル環

可換環論において、クルル環 (Krull ring) あるいはクルル整域 (Krull domain) は素イデアル分解の良い振る舞いの理論を伴った可換環である。それらは によって導入された。それらはデデキント整域の高次元の一般化である。デデキント整域はちょうど次元が高々 1 のクルル整域である。 この記事において、環は可換で単位元をもつ。.

新しい!!: 可換環とクルル環 · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: 可換環とクルル次元 · 続きを見る »

ケーラー微分

数学において、ケーラー微分 (Kähler differential) は微分形式の任意の可換環やスキームへの応用を提供する。.

新しい!!: 可換環とケーラー微分 · 続きを見る »

ケイリー・ハミルトンの定理

イリー・ハミルトンの定理(ケイリー・ハミルトンのていり、Cayley–Hamilton theorem)、またはハミルトン・ケイリーの定理とは、線型代数学において、(実数体や複素数体を含む)可換環上の正方行列は固有方程式を満たすという定理である。アーサー・ケイリーとウィリアム・ローワン・ハミルトンにちなむ。.

新しい!!: 可換環とケイリー・ハミルトンの定理 · 続きを見る »

コルモゴロフ空間

数学の位相空間論関連分野におけるコルモゴロフ空間(コルモゴロフくうかん、Kolmogorov space)あるいは T0-空間は、任意の二点に対して少なくともその一方が他方を含まぬ開近傍を持つような位相空間である。この条件は分離公理と呼ばれるものの一種で、T0-分離公理などと呼ばれ、直観的には空間の各点が位相的に識別可能であることを意味する。名称はアンドレイ・コルモゴロフの名に因む。.

新しい!!: 可換環とコルモゴロフ空間 · 続きを見る »

コーエン・マコーレー環

数学において、コーエン・マコーレー環 (Cohen–Macaulay ring, CM ring) は局所のような非特異多様体の代数幾何的な性質のいくつかをもった可換環のタイプである。 それらは純性定理を多項式環に対して証明したと、純性定理を形式的冪級数環に対して証明したのために名づけられている。すべての Cohen–Macaulay 環は純性定理が成り立つ。 可換ネーター局所環については次の包含関係が成り立つ。.

新しい!!: 可換環とコーエン・マコーレー環 · 続きを見る »

コーシー・ビネの公式

代数学におけるコーシー・ビネの公式 (こーしー・びねのこうしき、Cauchy-Binet formula)、あるいは、コーシー・ビネの定理、コーシー・ビネの展開とは、および オーギュスタン=ルイ・コーシーに由来する恒等式で、2つの行列の積から作られる正方行列の行列式を、元の行列から取り出せる最大の小行列式の積の和で表せるというものであり 、行列の要素は実数や複素数だけでなく可換環としても成立する。.

新しい!!: 可換環とコーシー・ビネの公式 · 続きを見る »

コホモロジー環

数学では、特に代数トポロジーでは、位相空間 X のコホモロジー環 (cohomology ring) は、X のコホモロジー群から作られる環であり、環の積としてカップ積を持つ。ここに「コホモロジー」とは、通常、特異コホモロジーであるが、しかし、環の構造はド・ラームコホモロジーのような他の理論でも存在する。コホモロジー環は函手的でもあり、空間の連続写像に対しコホモロジー環上の環準同型を得る。この函手は反変的である。 特に、可換環 R(典型的には、R は Zn、Z、Q、R、あるいは C)を係数として持つ X 上のコホモロジー群 Hk(X; R) に対し、カップ積を定義できる。 カップ積は次のコホモロジー群の直和の上の積を与える。 この積によって、群 H•(X; R) は環となる。実際、自然に N-次数付き環であり、非負の整数 k が次数の役割を持つ。カップ積はこの次数付けと整合している。 k(X;R) on X with coefficients in a commutative ring R (typically R is Zn, Z, Q, R, or C) one can define the cup product, which takes the form The cup product gives a multiplication on the direct sum of the cohomology groups This multiplication turns H•(X;R) into a ring.

新しい!!: 可換環とコホモロジー環 · 続きを見る »

ゴールドマン整域

数学において、ゴールドマン整域 (Goldman domain) は整域 A であってその分数体が A 上有限生成代数であるようなものであるGoldman domains/ideals are called G-domains/ideals in (Kaplansky 1974).

新しい!!: 可換環とゴールドマン整域 · 続きを見る »

ザリスキー位相

代数幾何学と可換環論において、ザリスキ位相は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 可換環の素イデアル全体の集合へのザリスキ位相の一般化は、代数閉体上定義されたアファイン多様体の点全体と多様体の正則関数環の極大イデアル全体との間の1:1対応を確立するヒルベルトの零点定理から従う。この定理より、可換環の極大イデアル全体の集合上のザリスキ位相は、ある与えられたイデアルを含む極大イデアルの全体を閉集合とし、かつそのような集合のみが閉集合である、と定めればよいことが示唆される。グロタンディークのスキーム論のもう1つの基本的な考えは、極大イデアルに対応する普通の点のみならず、すべての(既約)代数多様体、これは素イデアルに対応する、をも点として考えることである。したがって、可換環の素イデアル全体の集合(スペクトル)上のザリスキ位相は、ある固定されたイデアルを含むような素イデアル全体の集合の全体を閉集合系とする位相である。.

新しい!!: 可換環とザリスキー位相 · 続きを見る »

ジャコブソン予想

抽象代数学において、ジャコブソン予想 (Jacobson's conjecture) はネーター環のジャコブソン根基のベキの共通部分に関する環論の未解決問題である。 それは今のところネーター環の特別なタイプに対してしか証明されていない。環が一方の側でネーターでないときに予想が成り立たないことを示す例が存在するので、環が両側ネーターであることは絶対に必要である。 予想は予想の最初のバージョンを提出した代数学者 Nathan Jacobson にちなんで名づけられている。.

新しい!!: 可換環とジャコブソン予想 · 続きを見る »

ジャコブソン根基

数学、より詳しくは抽象代数学の一分野である環論において、環 R のジャコブソン根基あるいはヤコブソン根基(Jacobson radical)とは、すべての単純右 R-加群を零化する R の元からなるイデアルである。定義において「右」の代わりに「左」としても同じイデアルが得られるので、この概念は左右対称的である。環のジャコブソン根基は頻繁に J(R) や rad(R) と表記される。しかしながら、他の環の根基との混乱を避けるため、この記事では前者の表記を使うのがよいであろう。ジャコブソン根基はにちなんで名づけられた。彼は初めてそれを任意の環についてで研究した人である. 環のジャコブソン根基はたくさんの内部的な特徴づけをもっており、単位元をもたない環に対してこの概念をうまく拡張するいくつかの定義も含んでいる。加群の根基はジャコブソン根基の定義を加群を含むように拡張する。ジャコブソン根基は多くの環や加群の理論の結果、例えば中山の補題において、際立った役割を果たす。 Isaacs, Corollary 13.3, p. 180 Somewhat remarkable is that this also equals the intersection of all maximal left ideals of R. Although the Jacobson radical is indeed an ideal, this is not entirely obvious from the previous two characterizations and hence other characterizations are preferred.

新しい!!: 可換環とジャコブソン根基 · 続きを見る »

スマッシュ積

数学において,2つの基点付き空間(すなわち区別された基点を持つ位相空間) と のスマッシュ積(smash product)とは,積空間 において,すべての と に対して と と同一視した商空間である.スマッシュ積は通常 あるいは と書かれる.スマッシュ積は( と がともに等質でない限り)基点の取り方に依存する. と をそれぞれ の部分空間 と と考えることができる.これらの部分空間は一点, の基点で交わる.したがってこれらの部分空間の合併はウェッジ和 と同一視できる.するとスマッシュ積は商 である. スマッシュ積は代数的位相幾何学の一分野ホモトピー論において現れる.ホモトピー論では,すべての位相空間の圏とは異なる空間の圏でしばしば考える.これらの圏のうちスマッシュ積の定義をわずかに修正しなければならないものがある.例えば,2つののスマッシュ積は,定義において積位相ではなくCW複体の積を用いることで,CW複体である.同様の修正は他の圏においても必要である..

新しい!!: 可換環とスマッシュ積 · 続きを見る »

スティーフェル・ホイットニー類

数学、特に代数トポロジーや微分幾何学において、スティーフェル・ホイットニー類 (Stiefel–Whitney class) は、実ベクトル束の (topological invariant) であって、ベクトル束の切断がどこでも(線型)独立な集合を構成するための (obstruction) を記述する。ベクトル束のファイバーのベクトル空間としての次元を とすると、0 番目から 番目までスティーフェル・ホイットニー類を持つ。 番目のスティーフェル・ホイットニー類が 0 でないならば、ベクトル束は、どこでも線型独立な切断を 個持つことはない。 番目のスティーフェル・ホイットニー類が 0 でないことは、束のどの切断もある点で 0 とならねばならないことを示している。1 番目のスティーフェル・ホイットニー類が 0 でないことは、ベクトル束が向き付け可能ではないことを示している。たとえば、円上の直線束としてのメビウスの帯の 1 番目のスティーフェル・ホイットニー類は 0 でなく、一方、円上の自明直線束 の 1 番目のスティーフェル・ホイットニー類は 0 である。 エドゥアルト・シュティーフェル (Eduard Stiefel) と (Hassler Whitney) の名前に因んだ命名のスティーフェル・ホイットニー類は、実ベクトル束に付帯する -特性類である。 代数幾何学では、非退化二次形式を持つベクトル束に対してスティーフェル・ホイットニー類の類似も定義されていて、エタールコホモロジー群やミルナーのK-理論に値を持つ。特別な例として、体上の二次形式のスティーフェル・ホイットニー類を定義することもでき、最初の 2つは判別式と (Hasse–Witt invariant) である。 1×R is zero.

新しい!!: 可換環とスティーフェル・ホイットニー類 · 続きを見る »

セール・スワンの定理

数学の分野であるトポロジーとK-理論において、セール・スワンの定理 (Serre–Swan theorem)、あるいはスワンの定理 (Swan's theorem) は、ベクトル束の幾何的な概念を射影加群の代数的概念に関係づけ、数学のいたるところで共通の直感を生じる: "可換環上の射影加群はコンパクト空間上のベクトル束のようである"。 定理の 2 つの正確な定式化は多少異なる。1955年にジャン・ピエール・セール (Jean-Pierre Serre) によって述べられたもとの定理は本質的により代数的であり、(任意標数の)代数的閉体上の代数多様体上のベクトル束に関係する。1962年に (Richard Swan) によって述べられた補足的変種はより解析的であり、滑らかな多様体あるいはハウスドルフ空間上の(実、複素、あるいは四元)ベクトル束に関係する。.

新しい!!: 可換環とセール・スワンの定理 · 続きを見る »

冪零イデアル

数学、より正確には環論において、環のイデアル I が冪零イデアル (nilpotent ideal) であるとは、ある自然数 k が存在して Ik.

新しい!!: 可換環と冪零イデアル · 続きを見る »

冪零元

数学において、環 R の元 x はある正の整数 n が存在して xn.

新しい!!: 可換環と冪零元 · 続きを見る »

商体

数学における整域の分数体(ぶんすうたい、field of fractions)あるいは商体(しょうたい、field of quotients)とは、与えられた整域に対してそれを部分環として含む最小の体である。整域 R の商体の元は a ≠ 0 および b なる整域 R の元によって分数 b/a の形に表される。環 R の商体が K であることを K.

新しい!!: 可換環と商体 · 続きを見る »

全商環

数学における全商環(ぜんしょうかん、total quotient ring)あるいは全分数の環 (total ring of fractionsMatsumura (1989), p. 21) は、整域に対する商体の構成を、零因子をもつ可換環に対して一般化するものである。この構成は、可換環に対して、その非零因子の「逆元」を付け加えて、より大きな環を作り出す操作になっている。零因子を可逆化することはできないa が R の零元と異なる零因子で、a が R の全商環 Q の中で単元となると仮定すると、R の零元でない元 b で ab.

新しい!!: 可換環と全商環 · 続きを見る »

剰余体

数学において、剰余体(じょうよたい、residue field)は可換環論における基本的な構成である。R を可換環、m を極大イデアルとしたとき、剰余体は剰余環 k.

新しい!!: 可換環と剰余体 · 続きを見る »

剰余環

数学の一分野、環論における商環(しょうかん、quotient ring)、剰余環(じょうよかん、factor ring)あるいは剰余類環(じょうよるいかん、residue class ring)とは、群論における剰余群や線型代数学における商線型空間に類似した環の構成法およびその構成物である。すなわち、はじめに環 R とその両側イデアル I が与えられたとき、剰余環 R/I と呼ばれる新しい環が、I の全ての元が零元に潰れる(I による違いを「無視」するともいえる)ことで得られる。 注意: 剰余環は商環とも呼ばれるけれども、整域に対する商体(分数の体)と呼ばれる構成とは異なるし、全商環(商の環、これは環の局所化の一種)とも異なる。.

新しい!!: 可換環と剰余環 · 続きを見る »

剰余類環

数学において、自然数 を法とする合同類環(ごうどうるいかん)あるいは剰余(類)環(じょうよかん、n, n)は、整数を で割った「剰余」を抽象的な類別として捉えたものである。 本項は剰余類環 の代数的な定義と性質について述べる。合同類別に関するより平易な導入については整数の合同を参照のこと。.

新しい!!: 可換環と剰余類環 · 続きを見る »

CM-タイプのアーベル多様体

数学において、体 K 上定義されたアーベル多様体 A がCM-タイプ(CM-type)であるとは、自己準同型環 End(A) の中で十分に大きな部分可換環を持つことをいう。この用語は虚数乗法 (complex multiplication) 論から来ていて、虚数乗法論は19世紀に楕円曲線の研究のため開発された。20世紀の代数的整数論と代数幾何学の主要な成果のひとつに、アーベル多様体の次元 d > 1 の理論の正しい定式化が発見されたことがある。この問題は、多変数複素函数論を使うことが非常に困難であるため、非常に抽象的である。 フォーマルな定義は、有理数体 Q と End(A) のテンソル積 は Z 上、次元 2d の可換部分環を含んでいることである。d.

新しい!!: 可換環とCM-タイプのアーベル多様体 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: 可換環と素イデアル · 続きを見る »

素元

数学、特に抽象代数学において、可換環の素元(prime element)は整数における素数や既約多項式と似たある性質を満たす対象である。素元と既約元を区別するよう注意しなければならない。既約元はUFDにおいては素元と同じ概念であるが、一般には異なる。.

新しい!!: 可換環と素元 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: 可換環と素因数分解 · 続きを見る »

素環

論において、素環(そかん、prime ring)とは、任意の について、 ならば が成り立つような環 のことである。.

新しい!!: 可換環と素環 · 続きを見る »

群環

代数学において、与えられた群および環に対する群環(ぐんかん、group ring)は、与えられた群と環の構造を自然に用いて構成される。群環はそれ自身が、与えられた環を係数環とし与えられた群を生成系とする自由加群であって、なおかつ与えられた群の演算を生成元の間の演算として「線型に」延長したものを積とする環を成す。俗に言えば、群環は与えられた群の与えられた環の元を「重み」とする形式和の全体である。与えられた環が可換であるとき、群環は与えられた環上の多元環(代数)の構造を持ち、群多元環(ぐんたげんかん、group algebra; 群代数)(あるいは短く群環これは少々紛らわしいが、任意の群環は係数環の中心上の群多元環となるから、その文脈で何を係数環としているかが明らかならば混乱の虞は無いであろう。)と呼ばれる。 群環は、特に有限群の表現論において重要な役割を果たす代数的構造である。無限群の群環はしばしば位相を加味した議論を必要とするため位相群の群環の項へ譲り、本項は主に有限群の群環を扱う。また、より一般の議論は群ホップ代数を見よ。.

新しい!!: 可換環と群環 · 続きを見る »

結合多元環

数学における(結合)線型環あるいは結合的代数または結合多元環(けつごうたげんかん、associative algebra)は、結合的な環であって、かつそれと両立するような、何らかの体上の線型空間(若しくはもっと一般の可換環上の加群)の構造を備えたものである。即ち、線型環 A は(結合律や分配律を含む)幾つかの公理を満足する二項演算(内部演算)としての加法と乗法を備え、同時に乗法と両立するスカラー(体 K や環 R の元)による乗法(外部演算)を備える。 分野によっては、線型環が乗法単位元 1 を持つと仮定することが典型的である場合もある。このような余分の仮定を満たすことを明らかにする場合には、そのような線型環を単型線型環(単位的(結合)多元環)と呼ぶ。.

新しい!!: 可換環と結合多元環 · 続きを見る »

終結式

数学において、2つの多項式の終結式(しゅうけつしき、resultant)はそれらの係数を不定元とする整係数多項式であり、これが 0 になることと多項式が(係数体の適当な拡大体において)共通根を持つことが同値である、あるいは同じことだが、(多項式の係数体上)共通因子を持つことと同値である。古い文献では eliminant(消去式)と呼ばれることもある。 終結式は数論において、直接あるいは判別式を通して、広く用いられる。判別式は本質的に多項式とその微分の終結式である。有理係数あるいは多項式係数の2つの多項式の終結式はコンピュータで効率的に計算できる。それは の基本的なツールであり、たいていの数式処理システムの組み込み関数である。それはとりわけ、 (CAD), 有理関数の逆微分、二変数多項式方程式によって定義された曲線の描画、に対して使われる。.

新しい!!: 可換環と終結式 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 可換環と環 (数学) · 続きを見る »

環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

新しい!!: 可換環と環の局所化 · 続きを見る »

環の圏

数学の特に圏論における(単位的・結合)環の圏(かんのけん、category of rings) は、すべての(単位元持つ)環を対象とし、すべての(単位元を保つ)環準同型を射とする圏である。他の多くの例と同じく、環の圏は大きい(すなわち、すべての環の成す類は集合でない真の類である)。.

新しい!!: 可換環と環の圏 · 続きを見る »

環の冪零根基

代数学において、可換環の冪零根基(べきれいこんき、nilradical)とは環のすべての冪零元からなるイデアルである。 非可換環の場合、同じ定義では常にはうまくいかない。異なる方法で可換な場合を一般化させたいくつかの根基に行きつく。詳しくは記事「環の根基」を見よ。 リー環に対してが同様に定義される。.

新しい!!: 可換環と環の冪零根基 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 可換環と環上の加群 · 続きを見る »

環上の多元環

数学の殊に環論において可換環上の代数あるいは多元環(たげんかん、algebra)は、体上の多元環の概念において係数体を考えるところを置き換えて可換環を係数環としたものである。 本項においては、環と言えば単位元を持つものと仮定する。.

新しい!!: 可換環と環上の多元環 · 続きを見る »

環論

数学において、環論(かんろん、ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった 。.

新しい!!: 可換環と環論 · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: 可換環と環準同型 · 続きを見る »

直交補空間

数学の線型代数学および関数解析学の分野において、部分線型空間の直交補空間(ちょっこうほくうかん、; perp)とは、その部分空間内のすべてのベクトルと直交するようなベクトル全体の成す集合を言い、直交補空間はそれ自身部分線型空間を成す。.

新しい!!: 可換環と直交補空間 · 続きを見る »

D-加群

数学において、D-加群(D-module)は、微分作用素の環 D 上の加群である。そのような D-加群への主要な興味は、線型偏微分方程式の理論へのアプローチとしてである。1970年ころ以来、D-加群の理論は、主要には代数解析上の佐藤幹夫のアイデアのまとめて、についての佐藤とヨゼフ・ベルンシュタイン(Joseph Bernstein)の仕事へと発展した。 初期の主要な結果は、柏原正樹のとである。D-加群論の方法は、常に、層の理論から導かれ、代数幾何学のアレクサンダー・グロタンディークの仕事からに動機を得たテクニックを使った。D-加群のアプローチは、微分作用素を研究する伝統的な函数解析のテクニックとは異なっている。最も強い結果は、()に対して得られ、表象によりが定義される。特性多様体は余接バンドルの包合的部分集合であり,その中で最良の例が、最小次元の余接バンドルのラグラジアン部分多様体である()。テクニックは、グロタンディーク学派の側からゾグマン・メブク (Zoghman Mebkhout) により開発された。彼は、すべての次元でのの導来圏の一般的なバージョンを得た。.

新しい!!: 可換環とD-加群 · 続きを見る »

非可換幾何

数学における非可換幾何(ひかかんきか、noncommutative geometry)とは可換性が成り立たない(「積」について xy と yx が一致しない)ような代数構造に対する空間的・幾何学的な解釈を研究する分野である。通常の幾何学では様々な関数の積に関して可換性が要求されるが、その条件を外すことによってどんな現象がとらえられるかが追求される。.

新しい!!: 可換環と非可換幾何 · 続きを見る »

非可換環

数学、特に現代代数学と環論において、非可換環(ひかかんかん、noncommutative ring)とは乗法が可換ではない環である。つまり、 なる の元 が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。.

新しい!!: 可換環と非可換環 · 続きを見る »

非可換整域

数学の特に環論と呼ばれる抽象代数学の一分野における(非可換)整域あるいは域(いき、domain)とは、右または左零因子を持たない(つまり ならば または が成り立つ、を満たすとも言われる)環のことを言う。しばしば自明でない(一つよりも多くの元を持つ)ことを仮定するが、域が乗法単位元を持つならば、この仮定は と同値であり、この場合の域は「左または右零因子を持たない非自明な環」のことになる。1(≠ 0) を持つ可換域は(可換)整域と呼ばれる。; 定理 (Wedderburn): 有限域は自動的に有限体になる。 零因子について(少なくとも可換環の場合には)位相幾何学的な解釈をすることができる。環 が可換整域となるための必要十分条件は、 が被約環(つまり冪零元を持たない環)であり、かつそのスペクトル が既約位相空間となることである。前者の性質はある種の無限小の情報を保有しているとしばしば考えられ、対して後者はより幾何学的な情報を与えている。例えば、体 上の環 は整域でない( および の属する類が零因子を与える)が、これは幾何学的にはこの環のスペクトルが既約でない(実際に、二つの既約成分である直線 と の和となる)ことに対応する。.

新しい!!: 可換環と非可換整域 · 続きを見る »

順序環

抽象代数学において、順序環(じゅんじょかん、)は、演算と両立するような全順序が定義された(通常は可換な)環を言う。即ち、 が順序環であるとき、任意の元 に対し、以下の二つが成り立つ。.

新しい!!: 可換環と順序環 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: 可換環と行列 · 続きを見る »

行列の乗法

数学において、行列の対から別の行列を作り出す二項演算としての行列の乗法は、実数や複素数などの数が初等的な四則演算でいうところの乗法を持つことと対照的に、そのような「数の配列」の間の乗法として必ずしも一意的な演算を指しうるものではない。そのような意味では、一般に「行列の乗法」は幾つかの異なる二項演算を総称するものと考えることができる。行列の乗法の持つ重要な特徴には、与えられた行列の行および列の数(行列の型やサイズあるいは次元と呼ばれるもの)が関係して、得られる行列の成分がどのように特定されるかが述べられるということが挙げられる。 例えば、ベクトルの場合と同様に、任意の行列に対してスカラーを掛けるという操作が、その行列の全ての成分に同じ数を掛けるという方法で与えられる。また、の場合と同様に、同じサイズの行列に対して成分ごとの乗法を入れることによって定まる行列の積はアダマール積と呼ばれる。それ以外にも、二つの行列のクロネッカー積は区分行列として得られる。 このようにさまざまな乗法が定義できるという事情の中にあっても、しかし最も重要な行列の乗法は連立一次方程式やベクトルの一次変換に関するもので、応用数学や工学へも広く応用がある。これは通例、行列の積(ぎょうれつのせき、matrix product)と呼ばれるもので、 が 行列で、 が 行列ならば、それらの行列の積 が 行列として与えられ、その成分は の各行の 個の成分がそれぞれ順番に の各列の 個の成分と掛け合わされる形で与えられる(後述)。 この通常の積は可換ではないが、結合的かつ行列の加法に対して分配的である。この行列の積に関する単位元(数において を掛けることに相当するもの)は単位行列であり、正方行列は逆行列(数における逆数に相当)を持ち得る。行列の積に関して行列式は乗法的である。一次変換や行列群あるいは群の表現などの理論を考える上において行列の積は重要な演算となる。 行列のサイズが大きくなれば、二つあるいはそれ以上の行列の積の計算を定義に従って行うには、非常に膨大な時間が掛かるようになってしまうため、効果的に行列の積を計算できるアルゴリズムが考えられてきた。.

新しい!!: 可換環と行列の乗法 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: 可換環と行列式 · 続きを見る »

行列群

数学において、行列群 (matrix group) はある体 K、通常は前もって固定される、上の可逆行列からなる群 G で、行列の積と逆の演算をもつ。より一般に、可換環 R 上の n × n 行列を考えることができる。(行列のサイズは有限に制限される、なぜならば任意の群は任意の体上の無限行列の群として表現することができるからだ。)線型群 (linear group) は体 K 上の行列群に同型な抽象群である、言い換えれば、K 上の忠実な有限次元表現をadmitする。 任意の有限群は線型である、なぜならばそれはを使って置換行列によって実現できるからだ。の中で、線型群は面白く扱いやすいクラスをなす。線型でない群の例はすべての「十分大きい」群を含む。例えば、無限集合の置換からなる無限対称群。.

新しい!!: 可換環と行列群 · 続きを見る »

行列環

抽象代数学において、行列環 (matrix ring) は、および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。 R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。 行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。.

新しい!!: 可換環と行列環 · 続きを見る »

豊富な直線束

代数幾何学では、非常に豊富な直線束(very ample line bundle)は、基礎となる代数多様体や多様体 M から射影空間への埋め込みを行う設定に充分な大域的切断があるバンドルのことを言う。豊富な直線束(ample line bundle)はバンドルのある正のべきが非常に豊富となるときを言う。大域的に生成された層(globally generated sheaves)とは、射影空間への射を定義することに充分な切断を持つ層のことを言う。 M into projective space.

新しい!!: 可換環と豊富な直線束 · 続きを見る »

超実数

超実数(ちょうじっすう、hyperreal number)または超準実数(ちょうじゅんじっすう、nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 は実数体 の拡大体であり、 の形に書ける如何なる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。 の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理が主張するのは、 についての一階述語論理の真なる主張は においても真であることである。例えば、加法の可換則 は、実数におけると全く同様に、超実数に対しても成り立つ。また例えば は実閉体であるから、 も実閉体である。また、任意の整数 に対して が成立するから、任意の に対しても が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に対する関心は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にロビンソンは、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなかったならば、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。一つの例は、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することである。つまり、 の導関数は、 になる。 ただし、 は無限小超実数で、 とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。.

新しい!!: 可換環と超実数 · 続きを見る »

輪 (数学)

数学における輪(りん、wheel)は、環に似た代数系で、除法が常に可能となる(特に零除算が意味を持つ)ようなものである。輪における除法は、通常の二項演算として理解することは諦めて、代わりに反転演算 と似た(しかし必ずしも一致しない)単項演算 を施した元を掛ける操作として考えることになる。通常の如く は の略記であるものと理解するが、通常の算術における規則を.

新しい!!: 可換環と輪 (数学) · 続きを見る »

自由代数

数学、とくに環論という抽象代数学の分野において、自由代数(じゆうだいすう、free algebra)は多項式環の非可換類似である、なぜならばその元は可換でない変数の「多項式」として書けるからである。同様に、多項式環は自由可換代数 (free commutative algebra) と見ることができる(多項式環#多項式環の普遍性参照)。.

新しい!!: 可換環と自由代数 · 続きを見る »

連接層

数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(れんせつそう、英: coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。 連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(じゅんれんせつそう、英:quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。 代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。.

新しい!!: 可換環と連接層 · 続きを見る »

逆元

逆元 (ぎゃくげん、)とは、数学、とくに抽象代数学において、数の加法に対する反数や乗法に関する逆数の概念の一般化で、直観的には与えられた元に結合してその効果を「打ち消す」効果を持つ元のことである。逆元のきちんとした定義は、考える代数的構造によって少し異なるものがいくつか存在するが、群を考える上ではそれらの定義する概念は同じものになる。.

新しい!!: 可換環と逆元 · 続きを見る »

逆数学

逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、2階算術について実行され、定理が構成的解析と証明論に動機付けられた2階算術の部分体系のうち、どれに対応するのかを研究する。 2階算術を使うことで、再帰理論からの多くの技術も利用できる。実際、逆数学の結果の多くは、計算可能性解析の結果を反映している。 逆数学は、によってはじめて言及された。基本文献はを参照。.

新しい!!: 可換環と逆数学 · 続きを見る »

Invariant basis number

数学、具体的には環論において、環が invariant basis number (IBN) property を持つとは、R 上のすべての有限生成自由左加群が well-defined な階数(ランク)を持つことをいう。体の場合には、IBN property は有限次元ベクトル空間は一意的な次元を持つという主張になる。.

新しい!!: 可換環とInvariant basis number · 続きを見る »

Magma (数式処理システム)

Magma は代数学、数論、代数幾何学、組合せ数学の問題を解くために開発された計算機代数ソフトウェアである。Magma という名前は代数的構造のマグマから取られている。Magma は Unix 系あるいは Linux で実行できる。または Windows でも利用することができる。.

新しい!!: 可換環とMagma (数式処理システム) · 続きを見る »

Tor関手

ホモロジー代数において、Tor 関手 (Tor functor, torsion functor) はテンソル積の関手の導来関手である。それらは最初一般に代数トポロジーにおいてと普遍係数定理を表現するために定義された。 特に R を環とし、R-Mod で左 R-加群の圏を、Mod-R で右 R-加群の圏を表す。R-Mod の加群 B をひとつ選んで固定する。Mod-R の対象 A に対し、T(A).

新しい!!: 可換環とTor関手 · 続きを見る »

接束

微分幾何学において、可微分多様体 の接束(せっそく、tangent bundle, 接バンドル、タンジェントバンドル) は の接空間の非交和である。つまり、.

新しい!!: 可換環と接束 · 続きを見る »

捩れ (代数学)

抽象代数学において、捩れ(ねじれ、torsion)は、群の場合は、有限位数の元を言い、また環上の加群の場合は、環のある正則元によって零化される加群の元を言う。.

新しい!!: 可換環と捩れ (代数学) · 続きを見る »

根号

根号(こんごう, radical symbol) "√" は平方根を表す記号。 "√" の用例がみられる印刷物は、ドイツの数学者による1525年の著作 "Coss"(『代数』)が最初のようである。ラテン語の radix(根、根源の意; 英語の に相当)の頭文字の r を変形したものであるといわれるが諸説あるようである。上に横棒を引くのは1637年ルネ・デカルトによる。 イタリア系ではヴィエトやボムベッリなどは R やそれに近い形の記号を根号として用いた。イギリス系では latus(一辺の意; 英語の side に相当)に由来する l, L が使われた。.

新しい!!: 可換環と根号 · 続きを見る »

森田同値

代数学において、森田同値(もりたどうち、Morita equivalence)とは、環論的な多くの性質を保つ環の間の関係のことを言う。これはにおいて同値関係と双対性に関する記号を定義した森田紀一にちなんで名付けられた。.

新しい!!: 可換環と森田同値 · 続きを見る »

概型

数学における概型あるいはスキーム (scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。 スキームを通じて圏論的に定義される様々な概念は大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。このためヴェイユ・ザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。.

新しい!!: 可換環と概型 · 続きを見る »

構造定数 (数学)

分配多元環の構造定数(こうぞうていすう、structure constant, structure coeficient)とは、与えられた自由加群に対して、それを分配多元環とするための積構造を決定する定数のことである。.

新しい!!: 可換環と構造定数 (数学) · 続きを見る »

次元 (数学)

数学における対象(図形)の次元(じげん、dimension)は、(やや不正確だが)その対象に属する点を特定するのに必要な座標の数の最小値として定まる。次元はその対象の内在的性質であって、その対象が「どのような空間に埋め込まれるか」ということとは無関係であることに注意すべきである。例えば、平面における単位円上の点は、平面上の点として二つの成分を持つ直交座標系によって特定することもできるけれども、極座標の偏角としての一つの座標のみによっても特定することができるので、単位円は(二次元の平面上に存在するものであるけれども)一次元の対象である。このような内在的な次取り扱いは、日常的な意味で用いられる「次元」とは異なる、数学的な意味での次元の概念を峻別するための根本的な観点である。 ''n''-次元ユークリッド空間 の次元は である。このことを別な種類の空間に対して一般化しようとするとき、「 を -次元たらしめるところのものはいったい何であるか」という問題に直面する。その一つの答えとして、 における球体を固定し、それを小さい半径 の球によって被覆するとき、被覆に必要な小さい球の数のオーダーが であることが挙げられる。この観点からはミンコフスキー次元あるいはより精緻なハウスドルフ次元の概念が導かれる。しかし、先ほどの問いの別な答えとして、例えば における球体の境界が局所的に と見なせることを挙げれば、帰納次元の概念が導かれる。これらの次元の概念は 上では一致するけれども、もっと一般の空間で考えたときには異なるということが起こりうる。 正八胞体(テッセラクト)は四次元図形の例である。数学と関係ない文脈では「正八胞体は四つの次元を持つ」というような「次元」の語の用例が見られるものの、数学用語としての用法では「正八胞体は次元 4 を持つ」とか「正八胞体の次元は 4 である」といったような表現になる。 高次元の概念自体はルネ・デカルトまで遡れるかもしれないけれども、実質的な高次元幾何学が形成され始めるのは19世紀に入ってから、ケイリー、ハミルトン、シュレーフリ、リーマンらの研究を通じてである。1854年にリーマンの Habilitationsschrift、1852年にシュレーフリの Theorie der vielfachen Kontinuität、1843年にハミルトンの四元数の発見、ケイリー数の構成などによって、高次元幾何学の幕は開かれた。 以下、いくつか数学的に重要な次元の定義を説明する。.

新しい!!: 可換環と次元 (数学) · 続きを見る »

次元論 (代数学)

数学において、次元論(じげんろん、dimension theory)は可換環論の一分野であり、可換環の次元の概念や、より一般にスキームのそれを研究する分野である。 理論はアフィン環、すなわち体上有限生成多元環である整域に対しては、はるかに単純である。により、そのような環のクルル次元は基礎体上の超越次数であり、理論は代数幾何学と並行して進む。を参照。一般的な理論は幾何学的でなくなる傾向がある。特に、ネーター的でない環に対して知られていることはほとんどない。(Kaplansky の commutative rings は非ネーターのケースに詳しい。)今日、標準的なアプローチは本質的にブルバキとEGAのアプローチである。これは次数付き加群を本質的に使い、他のものの中で射影多様体の次数の一般化である重複度の役割を強調する。このアプローチでは、クルルの単項イデアル定理は系として現れる。 この記事を通して、\operatorname は環のクルル次元を表し、\operatorname は素イデアルのクルル次元(すなわちその素イデアルにおける局所化のクルル次元)を表す。.

新しい!!: 可換環と次元論 (代数学) · 続きを見る »

次数付き可換環

抽象代数学における次数付き可換環(じすうつきかかんかん、graded-commutative ring; 次数付き交換環)あるいは歪可換環 (skew-commutative ring) とは、次数付き環であって、次数付きの意味で可換となるものを言う。すなわち、任意の斉次元 が次数付き交換関係(歪交換関係) xy.

新しい!!: 可換環と次数付き可換環 · 続きを見る »

次数付き対称代数

代数学において与えられた可換環 上の次数付き加群 の次数付き対称代数(じすうつきたいしょうだいすう、graded-symmetric algebra)は のテンソル代数 のあるイデアル による次数付き商代数を言う。ここに、そのイデアル は、 を のそれぞれ次数 の斉次元とするとき、.

新しい!!: 可換環と次数付き対称代数 · 続きを見る »

正則列

数学、特に可換環論において正則列(せいそくれつ、regular sequence)とは、不定元のように振る舞う可環環の元の列のことである。例えば、係数環 を持つ多項式環 において は正則列である。.

新しい!!: 可換環と正則列 · 続きを見る »

準素イデアル

可換環論において、準素イデアル(primary ideal)とは、可換環 A の真のイデアル Q であって、xy が Q の元かつ x が Q の元でないとき、ある自然数 n > 0 が存在して yn が Q の元となるようなイデアルのことである。.

新しい!!: 可換環と準素イデアル · 続きを見る »

昇鎖条件

昇鎖条件(しょうさじょうけん、ascending chain condition; ACC)および降鎖条件(こうさじょうけん、descending chain condition; DCC)とは、ある代数的構造が満たす有限性に関する性質である。これらの性質を持つ代数的構造で最も代表的なものに、可換環のイデアルがある。昇鎖条件および降鎖条件は、ダフィット・ヒルベルト、エミー・ネーター、エミール・アルティンらが可換環の構造に関する理論を構築する上で、重要な役割を果たした。 Hazewinkel, Gubareni & Kirichenko (2004), p.6, Prop.

新しい!!: 可換環と昇鎖条件 · 続きを見る »

既約多項式

代数学において既約多項式(きやくたこうしき、irreducible polynomial)とは、多項式環の既約元のことである。より冗長には次のようになる。 を単位元をもつ可換環とし、その単数全体を 、一変数多項式環を とおく。多項式 が2条件.

新しい!!: 可換環と既約多項式 · 続きを見る »

既約位相空間

位相幾何学において、既約空間(きやくくうかん、irreducible space, hyperconnected space)とは、空でない位相空間であって、2つの真閉部分集合に分解されない(すなわち和集合として書けない)ようなものである。この空間はとりわけ既約性が基本的な位相的性質の1つである代数幾何学において現れて役に立つ。.

新しい!!: 可換環と既約位相空間 · 続きを見る »

既約イデアル

数学において、可換環のイデアルはより大きい2つのイデアルの共通部分として書けないときに、既約 (irreducible) という.

新しい!!: 可換環と既約イデアル · 続きを見る »

既約元

抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 の0でも単元でもない元 は、 のある元 と に対して であるときにはいつでも または であるようなときに、素元と呼ばれる。)整域において、素元は既約元である素元 が既約元であることの証明。 とする。すると は素元なので または である。 であるとして、 としよう。すると となるので である。 は整域なので である。したがって は単元であり は既約である。Sharpe (1987) p.54。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、 が GCD 整域であり、 が の既約元であれば、 で生成されたイデアルは の素イデアル(したがって既約イデアル)である。.

新しい!!: 可換環と既約元 · 続きを見る »

数学における統一理論

数学の統一理論(すうがくのとういつりろん、unified theory of mathematics)に到達するためのいくつかの試みが歴史的に行われてきた。は、すべての主題(科目)は一つの理論に収まるべきであるという明確な展望を抱いている。.

新しい!!: 可換環と数学における統一理論 · 続きを見る »

数学記号の表

数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、一見して同じ記号であっても内容が異なっていたり、逆に異なる記号であっても、同じ対象を示していることがある数学においては、各々の記号はそれ単独では「意味」を持たないものと理解される。それらは常に、数式あるいは論理式として文脈(時には暗黙のうちに掲げられている、前提や枠組み)に即して評価をされて初めて、値として意味を生じるのである。ゆえにここに掲げられる意味は慣用的な一例に過ぎず絶対ではないことに事前の了解が必要である。記号の「読み」は記号の見た目やその文脈における意味、あるいは記号の由来(例えばエポニム)など便宜的な都合(たとえば、特定のグリフをインプットメソッドを通じてコードポイントを指定して利用するために何らかの呼称を与えたりすること)などといったものに従って生じるために、「記号」と「読み」との間には相関性を見いだすことなく分けて考えるのが妥当である。。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。.

新しい!!: 可換環と数学記号の表 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 可換環と整域 · 続きを見る »

整閉整域

可換環論において、整閉整域(せいへいせいいき、Integrally closed domain)とは、商体の中で整閉な整域のことである。すなわち、整域 A の商体 K の元 x がモニックな多項式関係 x^n+a_x^+\cdots+a_0.

新しい!!: 可換環と整閉整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: 可換環と整数 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »