ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

不対電子

索引 不対電子

一酸化窒素のN原子上には1つの不対電子がある。 不対電子(ふついでんし、unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。 電子は量子数によって決められる電子軌道を運動している。 s軌道やp軌道は、原子価を満たすようにsp3、sp2、spなどの混成軌道を形成するので、不対電子が現れることは少ない。これらの軌道ではラジカルは二量化し、電子が非局在化して安定化する。対照的に、d軌道やf軌道において、不対電子はよく見られる。これは、1つの電子軌道に入ることができる電子の数が多く、結合が弱くなるためである。またこれらの軌道においては、が比較的小さく、二量体にはなりにくい。 たとえば原子番号8の酸素は8個の電子を持つ。1s、2s軌道に各2個、2p軌道には4個の電子が配置される。2p軌道には1個あるいはスピンの向きが反対の2個の電子を入れることのできる軌道が3組あるので、酸素原子の最外殻には1組(2s軌道の2個を除いて)の対になった電子と、対になっていない2個の電子が存在することになる。 酸素分子は酸素原子2個からなるが、酸素分子の分子軌道では、2p軌道の計8個の電子は、もともと対になっている4個(2組)と、共有され対になった2個と、対になっていない2個という配置になる。 また一酸化窒素も不対電子をもつ物質の一つである。 対になっていない電子があることが磁性の特性をきめる。.

48 関係: 反磁性塩化バナジウム(III)塩化イッテルビウム塩化ジルコニウム(III)多重度孤立電子対岩村秀常磁性一重項酸素一酸化炭素二酸化塩素二酸化窒素強磁性化学に関する記事の一覧ポジトロニウムメチルマロニルCoAムターゼヤーン・テラー効果ラジカルラジカル (化学)ルイス構造式ヘキサトリイニルラジカルフッ化バナジウム(III)フォック演算子ダングリングボンドダイヤモンド分子イオンカルベンカーボンナノフォームガドリニウムギルバート・ルイスクエン酸シンターゼ動的核偏極法四酸化二窒素磁気モーメント銅含有亜硝酸還元酵素遊離超酸化カリウム超酸化物脱アミド酸素色素電子スピン共鳴電子スピン共鳴イメージング電子スピン共鳴顕微鏡格子欠陥標準モルエントロピー活性酸素有機磁性体

反磁性

反磁性(はんじせい、diamagnetism)とは、磁場をかけたとき、物質が磁場の逆向きに磁化され(=負の磁化率)、磁場とその勾配の積に比例する力が、磁石に反発する方向に生ずる磁性のことである 。 反磁性体は自発磁化をもたず、磁場をかけた場合にのみ反磁性の性質が表れる。反磁性は、1778年にセバールド・ユスティヌス・ブルグマンス によって発見され、その後、1845年にファラデーがその性質を「反磁性」と名づけた。 原子中の対になった電子(内殻電子を含む)が必ず弱い反磁性を生み出すため、実はあらゆる物質が反磁性を持っている。しかし、反磁性は非常に弱いため、強磁性や常磁性といったスピンによる磁性を持つ物質では隠れて目立たない。つまり、差し引いた結果の磁性として反磁性があらわれている物質のことを反磁性体と呼ぶに過ぎない。 このように、ほとんどの物質において反磁性は非常に弱いが、超伝導体は例外的に強い反磁性を持つ(後述)。なお、標準状態において最も強い反磁性をもつ物質はビスマスである。 なお、反強磁性(antiferromagnetism)は反磁性とは全く違う現象である。.

新しい!!: 不対電子と反磁性 · 続きを見る »

塩化バナジウム(III)

塩化バナジウム(III)(えんかバナジウム さん、Vanadium(III) chloride)は、化学式が VCl3 と表されるバナジウムの塩化物である。紫色の結晶で、他のバナジウム(III)錯体の前駆体として用いられる。2個の不対電子を持つため常磁性である。.

新しい!!: 不対電子と塩化バナジウム(III) · 続きを見る »

塩化イッテルビウム

塩化イッテルビウムは化学式YbCl3で表される塩化イッテルビウム(III)もしくは、化学式YbCl2で表される塩化イッテルビウム(II)を含む無機化合物である。本項では主に塩化イッテルビウム(III)について扱う。.

新しい!!: 不対電子と塩化イッテルビウム · 続きを見る »

塩化ジルコニウム(III)

塩化ジルコニウム(III)(えんかジルコニウム、Zirconium(III) chlorideまたはZirconium trichloride)は化学式ZrCl3であらわされる無機化合物である。空気には非常に敏感に反応する暗青色固体である。.

新しい!!: 不対電子と塩化ジルコニウム(III) · 続きを見る »

多重度

量子化学における多重度(たじゅうど、multiplicity)は、スピン角運動量をSとしたとき、2S+1で定義される。 多重度は、スピン角運動量の向きのみが異なる複数の縮退した量子状態(波動関数)を区別するために使われている。 多重度は、不対電子スピンの量の定量化である。多重度はフントの規則の結果である。 スピン角運動量Sは、S.

新しい!!: 不対電子と多重度 · 続きを見る »

孤立電子対

孤立電子対(こりつでんしつい、lone pair)とは、原子の最外殻の電子対のうち、共有結合に関与していない電子対のこと。それゆえ、非共有電子対(ひきょうゆうでんしつい、unshared electron pair)とも呼ばれる。 英語では、lone pairなので、「lp」と略すこともある。 量子力学的には、電子軌道はエネルギー準位の低いものから占有され、且つ一つの軌道にはスピンの異なる電子しか入ることができない。電子のスピンは+1/2と-1/2の二種類のみであるので対を成して軌道を占有することになる。分子軌道上にない電子はその原子のみに属するので、これを孤立電子対と呼ぶ。有機電子論では反応機構の要素として孤立電子対に独特の役割を想定していたが、量子論を中心とした現代の反応論では「共有結合に関与していない電子対」以上の意味はない。 孤立電子対の電子は金属やルイス酸性物質に配位することが可能であり、孤立電子対を持つ化合物は配位子やルイス塩基として働くことができる。.

新しい!!: 不対電子と孤立電子対 · 続きを見る »

岩村秀

岩村 秀(いわむら ひいず、1934年12月17日 - )は、日本の化学者(理学博士、東京大学)。分子科学研究所名誉教授、東京大学名誉教授、九州大学名誉教授、日本大学大学理工学部客員教授。専門は、有機化学。有機磁性体の開発や、分子機械の先駆的な研究などで知られる。.

新しい!!: 不対電子と岩村秀 · 続きを見る »

常磁性

常磁性(じょうじせい、英語:paramagnetism)とは、外部磁場が無いときには磁化を持たず、磁場を印加するとその方向に弱く磁化する磁性を指す。熱ゆらぎによるスピンの乱れが強く、自発的な配向が無い状態である。 常磁性の物質の磁化率(帯磁率)χは温度Tに反比例する。これをキュリーの法則と呼ぶ。 比例定数Cはキュリー定数と呼ばれる。.

新しい!!: 不対電子と常磁性 · 続きを見る »

一重項酸素

一重項酸素(いちじゅうこうさんそ)は酸素分子において分子軌道の1つπ*2p軌道上の電子が一重項状態で占有されている、すなわち全スピン量子数が0である励起状態のことである。1O2と表される。.

新しい!!: 不対電子と一重項酸素 · 続きを見る »

一酸化炭素

一酸化炭素(いっさんかたんそ、carbon monoxide)は、炭素の酸化物の1種であり、常温・常圧で無色・無臭・可燃性の気体である。一酸化炭素中毒の原因となる。化学式は CO と表される。.

新しい!!: 不対電子と一酸化炭素 · 続きを見る »

二酸化塩素

二酸化塩素(にさんかえんそ、chlorine dioxide)とは塩素の酸化物で、化学式 ClO2で表される無機化合物である。塩素の酸化数は+4。.

新しい!!: 不対電子と二酸化塩素 · 続きを見る »

二酸化窒素

二酸化窒素(にさんかちっそ、nitrogen dioxide)は、NO2 という化学式で表される窒素酸化物で、常温・常圧では赤褐色の気体または液体である。窒素の酸化数は+4。窒素と酸素の混合気体に電気火花を飛ばすと生成する。環境汚染の大きな要因となっている化合物である。赤煙硝酸の赤色は二酸化窒素の色に由来している。大気中の濃度は、約0.027 ppm。二酸化窒素は常磁性の、C2v対称性を持つ曲がった分子である。.

新しい!!: 不対電子と二酸化窒素 · 続きを見る »

強磁性

強磁性 (きょうじせい、ferromagnetism) とは、隣り合うスピンが同一の方向を向いて整列し、全体として大きな磁気モーメントを持つ物質の磁性を指す。そのため、物質は外部磁場が無くても自発磁化を持つことが出来る。 室温で強磁性を示す単体の物質は少なく、鉄、コバルト、ニッケル、ガドリニウム(18℃以下)である。 単に強磁性と言うとフェリ磁性を含めることもあるが、日本語ではフェリ磁性を含まない狭義の強磁性をフェロ磁性と呼んで区別することがある。なおフェロ (ferro) は鉄を意味する。.

新しい!!: 不対電子と強磁性 · 続きを見る »

化学に関する記事の一覧

このページの目的は、化学に関係するすべてのウィキペディアの記事の一覧を作ることです。この話題に興味のある方はサイドバーの「リンク先の更新状況」をクリックすることで、変更を見ることが出来ます。 化学の分野一覧と重複することもあるかもしれませんが、化学分野の項目一覧です。化学で検索して出てきたものです。数字、英字、五十音順に配列してあります。濁音・半濁音は無視し同音がある場合は清音→濁音→半濁音の順、長音は無視、拗音・促音は普通に(ゃ→や、っ→つ)変換です。例:グリニャール反応→くりにやるはんのう †印はその内容を内含する記事へのリダイレクトになっています。 註) Portal:化学#新着記事の一部は、ノート:化学に関する記事の一覧/化学周辺に属する記事に分離されています。.

新しい!!: 不対電子と化学に関する記事の一覧 · 続きを見る »

ポジトロニウム

ポジトロニウム (positronium) とは、電子と陽電子が電気的に束縛され対になった、一種の原子(エキゾチック原子)である。元素記号としてPsと記される。古典力学的な原子模型でいうと、電子と陽電子が共通重心を中心としてお互いを回っているということになる。物質中に陽電子を照射した場合、物質中の電子と陽電子は通常、対消滅してγ線を放出するが、絶縁体中ではかなりの割合で準安定状態としてポジトロニウムを形成する。.

新しい!!: 不対電子とポジトロニウム · 続きを見る »

メチルマロニルCoAムターゼ

メチルマロニルCoAムターゼ(英: Methylmalonyl Coenzyme A mutase)は、メチルマロニルCoAをスクシニルCoAへの異性化を触媒する酵素であり、主要な代謝経路に含まれている。これが機能するためには、ビタミンB12誘導体補因子であるアデノシルコバラミンが必要である。.

新しい!!: 不対電子とメチルマロニルCoAムターゼ · 続きを見る »

ヤーン・テラー効果

ヤーン・テラー効果(ヤーン・テラーこうか、Jahn-Teller effect)またはヤーン・テラー変形(ヤーン・テラーへんけい、Jahn-Teller distortion)は、特定の状況下で非線形分子の構造が歪む現象のことである。この電子的な作用は、電子的に縮退した非線形分子は安定ではありえないということを群論を用いて証明したハーマン・ヤーンとエドワード・テラーにちなんで名付けられた。この効果は、電子的に縮退した基底状態をもつあらゆる非線形分子は変形によって錯体のエネルギーが下がるため、縮退が解けるような幾何学的変形を受けるであろうと述べている。.

新しい!!: 不対電子とヤーン・テラー効果 · 続きを見る »

ラジカル

ラジカル(ラディカル)という語は様々な意味で用いられている。.

新しい!!: 不対電子とラジカル · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 不対電子とラジカル (化学) · 続きを見る »

ルイス構造式

ルイス構造(ルイスこうぞう、Lewis structure)は、元素記号の周りに内殻電子を無視して価電子のみを点(・)で表した化学構造式の一種で、分子中に存在する原子間の結合と孤立電子対を示す図である。ルイス構造は、どの原子同士が互いに結合を形成しているか、どの原子が孤立電子対を持っているか、どの原子が形式電荷を持っているかが分かるため有用である。 ルイス構造では、単結合は一対の点(:)で表記し、二重結合、三重結合はそれぞれ電子対の数を増やして表記する。ルイス構造式は任意の共有結合分子や配位化合物を描くことができる。ルイス構造式の着想は1916年にアメリカの化学者ギルバート・N・ルイスがThe Atom and the Moleculeと題した論文で提唱した。その他にも電子式 (electronic formula)、点電子構造式、点電子表記法といった呼称がある。 File:Acqua Lewis.png|thumb|H-O-H(水)のルイス構造 File:Carbon-dioxide-octet-Lewis-2D.png|thumb|O.

新しい!!: 不対電子とルイス構造式 · 続きを見る »

ヘキサトリイニルラジカル

ヘキサトリイニルラジカル(Hexatriynyl radical,C6H−)は、末端に水素を持つ直鎖状の6つの炭素原子から構成される有機のフリーラジカルである。 不対電子は、水素原子の反対側に位置する。この科学種に対する実験とシミュレーションは、どちらも1990年代初頭に行われた 。.

新しい!!: 不対電子とヘキサトリイニルラジカル · 続きを見る »

フッ化バナジウム(III)

フッ化バナジウム(III)(フッかバナジウム さん、Vanadium(III) fluoride)は、化学式が VF3 と表されるバナジウムのフッ化物である。暗緑色の固体で、酸化バナジウム(III)から二段階の反応で得られる。一段階目は、酸化バナジウム(III)とフッ化水素アンモニウムからヘキサフルオロバナジン(III)酸アンモニウムを合成する。 二段階目でヘキサフルオロバナジン(III)酸アンモニウムを熱分解することにより、フッ化バナジウム(III)が得られる。 アンモニウム塩の熱分解は、固体の無機化合物の一般的な合成法である。 は と HF の反応によって合成することもできる。 の固体は、バナジウム原子に6つのフッ素原子が配位している。2つの不対電子を持つため磁気モーメントを示す。.

新しい!!: 不対電子とフッ化バナジウム(III) · 続きを見る »

フォック演算子

量子力学のハートリー-フォック法において、フォック演算子は、量子系の1電子ハミルトニアンを近似する演算子である。 計算化学において、原子系や分子系のルーターン方程式を解く場合に使われる。 フォック演算子は、実際は量子系の真のハミルトニアンを近似したものである。 フォック演算子は電子間反発の影響を含んでいる。 しかしフォック演算子は1電子演算子なので、電子相関エネルギーを含んでいない。 フォック行列はフォック演算子を行列表示したものである。 閉殻軌道と1次元波動関数を仮定している場合、i番目の電子についてのフォック演算子\hat F(i)は、 ここで 不対電子を持つ系では、フォック演算子の形式は一通りではなく、多くの形式がありうる。.

新しい!!: 不対電子とフォック演算子 · 続きを見る »

ダングリングボンド

ダングリングボンド(dangling bond)は、原子における未結合手のこと。半導体結晶に於いては、結晶の表面や格子欠陥付近では、原子は共有結合の相手を失って、結合に関与しない電子(不対電子)で占められた結合手が存在する。この手をダングリングボンドと呼ぶ。 ダングリングボンド上の電子は不安定なため化学的に活性となり、特に結晶表面の物性には重要な役割を果たす。.

新しい!!: 不対電子とダングリングボンド · 続きを見る »

ダイヤモンド

ダイヤモンド( )は、炭素 (C) の同素体の1つであり、実験で確かめられている中では天然で最も硬い物質である。日本語で金剛石(こんごうせき)ともいう。ダイヤとも略される。結晶構造は多くが8面体で、12面体や6面体もある。宝石や研磨材として利用されている。ダイヤモンドの結晶の原子に不対電子が存在しないため、電気を通さない。 地球内部の非常に高温高圧な環境で生成されるダイヤモンドは定まった形で産出されず、また、角ばっているわけではないが、そのカットされた宝飾品の形から、菱形、トランプの絵柄(スート)、野球の内野、記号(◇)を指してダイヤモンドとも言われている。 ダイヤモンドという名前は、ギリシア語の (adámas 征服し得ない、屈しない)に由来する。イタリア語・スペイン語・ポルトガル語では diamánte(ディアマンテ)、フランス語では (ディアマン)、ポーランド語では (ディヤメント)、漢語表現では金剛石という。ロシア語では (ヂヤマント)というよりは (アルマース)という方が普通であるが、これは特に磨かれていないダイヤモンド原石のことを指す場合がある。磨かれたものについては (ブリリヤント)で総称されるのが普通。4月の誕生石である。石言葉は「永遠の絆・純潔・不屈」など。.

新しい!!: 不対電子とダイヤモンド · 続きを見る »

分子イオン

硝酸イオンの電位マップ。赤色の領域は、黄色の領域よりも電子密度が小さい。 分子イオン(ぶんしイオン、molecular ion)または多原子イオン(polyatomic ion) は、共有結合または錯体を作る2つまたはそれより多くの原子から構成されるイオンである。酸塩基化学においては単一の構造として働き、塩を形成する。かつては、必ずしも電荷を持たず、不対電子を持つラジカルの意味でも用いられていた。 例えば、水酸化物イオンは、1つの酸素原子と1つの水素原子から構成されており、OH-と表わされ、-1の電荷を持つ。アンモニウムイオンは、1つの窒素原子と4つの水素原子から構成され、NH4+の化学式を持ち、電荷は+1である。 分子イオンは、しばしば中性分子の共役酸または共役塩基と考えられる。例えば、硫酸イオンSO42-は、SO3+H2Oに分解されるH2SO4に由来する。.

新しい!!: 不対電子と分子イオン · 続きを見る »

カルベン

ルベン (carbene) とは価電子を六個しか持たず、電荷を持たない、二配位の炭素のことである。或は、そのような炭素を持つ化学種の総称である。 同族元素の類縁体として、シリレン、ゲルミレンがある。また、配位飽和から二電子少ない化学種としては他にニトレンが知られている。カルベンを置換基として見た場合にはアルキリデン基などと呼ばれる。 最も単純な構造のカルベンであるメチレン (methylene、H2C) はジアゾメタンの分解により発生させることができる(メチレンの炭素は2価である。そのため、メチレンだけが無機物とする分類もある。また、methylaneと呼ぶこともある)。 形式上、カルベンを配位子としたものと見なせる金属錯体 (R2C.

新しい!!: 不対電子とカルベン · 続きを見る »

カーボンナノフォーム

ーボンナノフォーム(Carbon nanofoam)は、1997年にオーストラリア国立大学のアンドレイ・ロードらが発見した炭素の同素体である。緩い3次元の網状に並ぶ低密度の炭素原子のクラスターである。 それぞれのクラスターの大きさは6nm程度で、約4000個の炭素原子がグラファイトのような薄層を形成し、六角形構造の中に七角形が包摂されることで負の屈曲性を持つ。これは、五角形が包摂されて正の屈曲性を持つバックミンスターフラーレンの場合と逆である。 カーボンナノフォームのマクロ構造はエアロゲルと似ているが、これまで作られたカーボンエアロゲルの1%の密度であり、海面上の空気のわずか数倍の密度である。またエアロゲルとは異なり、カーボンナノフォームは弱い電気伝導性を示す。カーボンナノフォームには多くの不対電子が含まれるが、ロードらはこれは炭素原子が3つの結合しか持たないためだと説明する。また磁石に引き寄せられ、-183℃(キュリー温度)以下ではそれ自体が磁石になるというカーボンナノフォームの最も特異的な性質は、これが原因である可能性もある。.

新しい!!: 不対電子とカーボンナノフォーム · 続きを見る »

ガドリニウム

ドリニウム (gadolinium) は原子番号64の元素。元素記号は Gd。希土類元素の一つ(ランタノイドにも属す)。.

新しい!!: 不対電子とガドリニウム · 続きを見る »

ギルバート・ルイス

ルバート・ニュートン・ルイス(Gilbert Newton Lewis, 1875年10月23日 - 1946年3月24日)は、アメリカ合衆国の物理化学者。共有結合の発見(ルイスの電子式)、重水の単離、化学熱力学を数学的に厳密で普通の化学者にも馴染める形で再構築、酸と塩基の定義、光化学実験などで知られている。1926年、放射エネルギーの最小単位を "photon"(光子)と名付けた。化学の専門家のフラタニティ Alpha Chi Sigma のメンバーだった。長く教授を務めたが、中でもカリフォルニア大学バークレー校に最も長く在籍した。.

新しい!!: 不対電子とギルバート・ルイス · 続きを見る »

クエン酸シンターゼ

ン酸シンターゼ(クエンさんシンターゼ、Citrate synthase)は、ほぼ全ての生細胞に含まれ、クエン酸回路の第一段階の速度を調整する酵素である。クエン酸シンターゼは、真核生物細胞のミトコンドリアマトリックスに局在するが、ミトコンドリアではなく細胞核のDNAによってコードされる。細胞質のリボソームで合成され、その後ミトコンドリアのマトリックスに輸送される。クエン酸シンターゼは、完全なミトコンドリアの存在量を示すマーカーとしても用いられている。 クエン酸シンターゼは、アセチルCoAの酢酸残基をオキサロ酢酸に付加し、クエン酸を合成する反応を触媒する。オキサロ酢酸は、クエン酸回路を一周すると再生される。 アセチルCoA + オキサロ酢酸 + 水 → クエン酸 + 補酵素A オキサロ酢酸が最初に酵素に結合すると、酵素の形が変化し、アセチルCoAの結合部位が形成される。シトロイルCoAが生成するとさらに構造が変化し、チオエステルを加水分解し、補酵素Aを遊離する。これにより、チオエステル結合の切断により放出されるエネルギーが縮合反応を駆動する。.

新しい!!: 不対電子とクエン酸シンターゼ · 続きを見る »

動的核偏極法

動的核偏極法 (どうてきかくへんきょくほう 、動的核分極法、DNP法とも) はスピン偏極を電子から原子核へと移動させることにより、電子スピンと同じ程度まで核スピンを揃える手法である。ある温度、ある強度の磁場下において熱平衡にある電子スピンの揃い方はボルツマン分布に従うが、様々な方法でこの値よりも高度に揃えることも可能である。例えば、化学反応(化学誘起DNP, )や光ポンピング、スピン注入などの方法がある。動的核偏極法はを実現する技術の一つとされている。 固体中において、放射損傷により生じる不対電子を利用して誘起されることもある。 電子スピン偏極が熱平衡値から乖離している場合、電子・原子核間の交差緩和およびスピン状態混合を通じて自発的にスピン偏極が移動する。例えば、ホモリシス反応の後には偏極移動が自発的に生じる。一方、電子スピン系が熱平衡にある場合、偏極移動を起こすには電子スピン共鳴周波数に近いマイクロ波の継続的な照射が必要となる。特に、マイクロ波駆動動的核偏極過程の機構はオーバーハウザー効果 (OE)、固体効果 (SE)、交差効果 (CE)、熱的混合 (TM) に分類される。 初の動的核偏極実験は1950年代初頭に低磁場下で行われたが、近年に至るまで適切な周波数で動作できるマイクロ波(もしくはテラヘルツ波)源が無かったため、高周波・高磁場NMRにおいてしか応用できていなかった。現在では、そのような光源が既製品として入手可能であり、特に高解像度固体NMR分光による構造決定の分野では動的核偏極法が欠かせないものとなっている。.

新しい!!: 不対電子と動的核偏極法 · 続きを見る »

四酸化二窒素

四酸化二窒素(しさんかにちっそ、dinitrogen tetroxide or nitrogen peroxide)は化学式 N2O4で表される窒素酸化物の一種である。窒素の酸化数は+4。強い酸化剤で高い毒性と腐食性を有する。四酸化二窒素はロケットエンジンの推進剤で酸化剤として注目されてきた。また化学合成においても有用な試薬である。固体では無色であるが、液体、気体では平衡副生成物の為、呈色している場合が多い(構造と特性に詳しい)。.

新しい!!: 不対電子と四酸化二窒素 · 続きを見る »

磁気モーメント

磁気モーメント(じきモーメント、)あるいは磁気能率とは、磁石の強さ(磁力の大きさ)とその向きを表すベクトル量である。外部にある磁場からもたらされる磁石にかかるねじる方向に働く力のベクトル量を指す。ループ状の電流や磁石、電子、分子、惑星などもそれぞれ磁気モーメントを持っている。 磁気モーメントは強さと方向を持ったベクトルと考えることができる。磁気モーメントの方向は磁石のS極からN極へ向いている。磁石がつくる磁場は磁気モーメントに比例する。正確には「磁気モーメント」とは一般的な磁場をしたときの1次項が生成する磁気双極子モーメントの系を言う。物体の磁場の双極子成分は磁気双極子モーメントの方向について対称であり、物体からの距離の −3 乗に比例して減少していく。 磁気モーメントは周囲に磁束を作る。 対になる磁極の強さを ±m とし、負極から正極を指すベクトルを d とする。磁気モーメント m はモーメントの名のとおり、m と d の積である。 磁力は電荷が移動することで発生する。回転する電荷は中心に位置する磁気モーメントと等価であり、その磁気モーメントは電荷のもつ角運動量と比例関係にある。.

新しい!!: 不対電子と磁気モーメント · 続きを見る »

銅含有亜硝酸還元酵素

銅含有亜硝酸還元酵素(どうがんゆうあしょうさんかんげんこうそ、)は補因子として銅イオンを含む 異化型の亜硝酸還元酵素で、亜硝酸イオン(NO2-)を一酸化窒素(NO)へと一電子還元する反応を触媒する酵素である。Copper-containing Nitrite Reductaseを略してCuNIR(カッパ―エヌアイアール)と呼ばれることが多い。本酵素の構造遺伝子であるnirKは水中や土壌中の窒素酸化物を分子状窒素(N2)へと段階的に還元する脱窒に関わる古細菌、真正細菌および一部の菌類に広く存在する。脱窒自体は嫌気呼吸の1つであり、nirKを持つ生物の多くは通性嫌気性生物である。脱窒過程の最初の段階である硝酸塩の還元を触媒する硝酸塩還元酵素は多くの生物が有する酵素であるが、次の段階を触媒する異化型の亜硝酸還元酵素を持つ生物は限られており、酸素の少ない環境下では脱窒菌がエネルギー合成上有利なため、このような代謝系が進化してきたものと考えられている。.

新しい!!: 不対電子と銅含有亜硝酸還元酵素 · 続きを見る »

遊離

化学における遊離とは、なんらかの化学種が結合していない状態にあること、および結合が切れることを指す用語である。様々な化学種に対してそれぞれ若干異なった用いられ方をする。.

新しい!!: 不対電子と遊離 · 続きを見る »

超酸化カリウム

超酸化カリウム(ちょうさんかカリウム、)はカリウムの超酸化物。溶融したカリウムを純粋な酸素中で燃焼させて得られる。.

新しい!!: 不対電子と超酸化カリウム · 続きを見る »

超酸化物

超酸化物(ちょうさんかぶつ、superoxide)とは、スーパーオキシドアニオン(化学式: )を含む化学物質の総称である。自然界では酸素分子()の一電子還元により広範囲に生成している点が重要であり、1つの不対電子を持つ。スーパーオキシドアニオンは、二酸素と同様にフリーラジカルであり、常磁性を有する。一般に活性酸素と呼ばれる化学種の一種である。 ルイス式で表したスーパーオキシドアニオン。それぞれの酸素原子に存在する、6つの外殻電子を黒点で表している。周りにある電子対は2つの酸素原子に共有され、左上には不対電子があり、(イオン化の時に)付加した電子による負電荷は赤点で表す。.

新しい!!: 不対電子と超酸化物 · 続きを見る »

脱アミド

脱アミド(だつアミド、Deamidation)は、アミドが有機化合物から取り除かれる化学反応。生化学での脱アミドは、アミノ酸(アスパラギンとグルタミン)のアミドを含む側鎖を分解するため、タンパク質の分解にとって重要な反応である。.

新しい!!: 不対電子と脱アミド · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: 不対電子と酸素 · 続きを見る »

色素

色素(しきそ、coloring matter, pigment)は、可視光の吸収あるいは放出により物体に色を与える物質の総称。 色刺激が全て可視光の吸収あるいは放出によるものとは限らず、光の干渉による構造色や真珠状光沢など、可視光の吸収あるいは放出とは異なる発色原理に依存する染料や顔料も存在する。染料や顔料の多くは色素である。応用分野では色素は染料及び顔料と峻別されず相互に換言できる場合がある。色素となる物質は無機化合物と有機化合物の双方に存在する。.

新しい!!: 不対電子と色素 · 続きを見る »

電子スピン共鳴

電子スピン共鳴(でんしスピンきょうめい: Electron Paramagnetic Resonance、略称EPR、Electron Spin Resonance、略称 ESR)は不対電子を検出する分光法の一種。遷移金属イオンもしくは有機化合物中のフリーラジカルの検出に用いられる。.

新しい!!: 不対電子と電子スピン共鳴 · 続きを見る »

電子スピン共鳴イメージング

電子スピン共鳴イメージングとは不対電子のエネルギー吸収を特異的に検出することができる電子スピン共鳴分光を利用して電子スピンの分布を可視化するイメージング法。.

新しい!!: 不対電子と電子スピン共鳴イメージング · 続きを見る »

電子スピン共鳴顕微鏡

電子スピン共鳴顕微鏡(でんしスピンきょうめいけんびきょうESRM)とは電子スピン共鳴(ESR)により画像を得る顕微鏡。.

新しい!!: 不対電子と電子スピン共鳴顕微鏡 · 続きを見る »

格子欠陥

格子欠陥(こうしけっかん, Lattice Defect)とは、結晶において空間的な繰り返しパターンに従わない要素である。格子欠陥は大別すると「不純物」と「原子配列の乱れ」があり、後者だけを格子欠陥と呼ぶときがある。狭い意味では特に格子空孔(後述)を指すこともある。伝導電子や正孔も広い意味では格子欠陥に含まれる。.

新しい!!: 不対電子と格子欠陥 · 続きを見る »

標準モルエントロピー

標準モルエントロピー(ひょうじゅんモルエントロピー、)とは、標準圧力における理想的あるいは仮想的な状態の、物質1モル当たりのエントロピーである。標準圧力 としては、1気圧すなわち 101325 Pa が伝統的に用いられているが、1980年代以降に編纂されたデータ集には1バールすなわち 105 Pa を採用しているものもある。標準モルエントロピー の値は温度に依存して変化するので、例えば 298 K における標準モルエントロピーであれば や のように添え字か引き数で温度を表す。温度が明示されていない場合は、298.15 K すなわち 25 ℃ における値であることが多い。 熱力学第三法則により、純物質の絶対零度における完全結晶のエントロピーは0であることから、物質の絶対エントロピーを求めることが可能となる。.

新しい!!: 不対電子と標準モルエントロピー · 続きを見る »

活性酸素

活性酸素(かっせいさんそ、Reactive Oxygen Species、ROS)は、大気中に含まれる酸素分子がより反応性の高い化合物に変化したものの総称である吉川敏一,河野雅弘,野原一子『活性酸素・フリーラジカルのすべて』(丸善 2000年)p.13。一般的にスーパーオキシドアニオンラジカル(通称スーパーオキシド)、ヒドロキシルラジカル、過酸化水素、一重項酸素の4種類とされる。活性酸素は、酸素分子が不対電子を捕獲することによってスーパーオキシド、ヒドロキシルラジカル、過酸化水素、という順に生成する。スーパーオキシドは酸素分子から生成される最初の還元体であり、他の活性酸素の前駆体であり、生体にとって重要な役割を持つ一酸化窒素と反応してその作用を消滅させる。活性酸素の中でもヒドロキシルラジカルはきわめて反応性が高いラジカルであり、活性酸素による多くの生体損傷はヒドロキシルラジカルによるものとされている吉川 1997 p.10。過酸化水素の反応性はそれほど高くなく、生体温度では安定しているが金属イオンや光により容易に分解してヒドロキシルラジカルを生成する吉川 1997 p.9。活性酸素は1 日に細胞あたり約10 億個発生し、これに対して生体の活性酸素消去能力(抗酸化機能)が働くものの活性酸素は細胞内のDNAを損傷し,平常の生活でもDNA 損傷の数は細胞あたり一日数万から数10 万個になるがこのDNA 損傷はすぐに修復される(DNA修復)。.

新しい!!: 不対電子と活性酸素 · 続きを見る »

有機磁性体

有機磁性体(ゆうきじせいたい)とは有機物によって構成される磁性体。.

新しい!!: 不対電子と有機磁性体 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »