ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ロンドン方程式

索引 ロンドン方程式

ンドン方程式(ロンドンほうていしき、London equation)とは、超伝導の特徴の1つであるマイスナー効果に対して現象論的な解釈を与える方程式のことである。 ロンドン兄弟(フリッツ・ロンドンとハインツ・ロンドン)によって導きだされたのでロンドン方程式という。この方程式で使うλ(ラムダ)をロンドンの侵入長(しんにゅうちょう、London penetration depth)という。.

7 関係: マイスナー効果ハインツ・ロンドンフリッツ・ロンドンギンツブルグ-ランダウ理論磁場侵入長超伝導量子渦

マイスナー効果

マイスナー効果(マイスナーこうか Meissner effect, Meißner Ochsenfeld Effekt)は、超伝導体が持つ性質の1つであり、遮蔽電流(永久電流)の磁場が外部磁場に重なり合って超伝導体内部の正味の磁束密度をゼロにする現象である。マイスナー―オクセンフェルト効果 、あるいは完全反磁性とも呼ばれる。.

新しい!!: ロンドン方程式とマイスナー効果 · 続きを見る »

ハインツ・ロンドン

ハインツ・ロンドン(Heinz London, 1907年11月7日 - 1970年8月3日)は、ドイツ生まれの物理学者である。低温物理学の分野に貢献した。 ボンのユダヤ系の家に生まれた。物理学者のフリッツ・ロンドンは兄である。ベルリン工科大学、ミュンヘン大学、ブレスラウ大学で学んだ後、ナチ党の権力掌握に伴って1934年にイギリスに渡り、オックスフォード大学で研究した。第二次世界大戦の後半にはイギリスの原爆プロジェクトに参加した。ハインツ・ロンドンの業績は1951年に3He-4He希釈冷凍法の原理を発明したことで10−3Kに達する極低温領域の冷却法のひとつとなった。.

新しい!!: ロンドン方程式とハインツ・ロンドン · 続きを見る »

フリッツ・ロンドン

フリッツ・ロンドン フリッツ・ロンドン(Fritz Wolfgang London, 1900年3月7日 - 1954年5月30日)はドイツ生まれの物理学者である。後にアメリカ合衆国に帰化した。非分極分子間に働く分子間力、ロンドン力に名前を残している。弟に同じ物理学者のハインツ・ロンドンがいる。.

新しい!!: ロンドン方程式とフリッツ・ロンドン · 続きを見る »

ギンツブルグ-ランダウ理論

ンツブルグ-ランダウ理論は、1950年にロシアで発表された超伝導を説明する現象論で、ランダウの相転移の理論と平均場理論を基にしている。Ψで表される秩序(オーダー)パラメータと呼ばれる超伝導の秩序の程度を表すパラメータを用いたのが特徴で、ベクトルポテンシャルAによるギンツブルグ-ランダウ方程式で表される。 この理論では、系のヘルムホルツの自由エネルギーについて、変分法によってその平衡状態を求めたとき、或る温度以下では電子対凝縮が起きた状態の方がエネルギーが低いことが示された。すなわち個々の電子として存在するよりも、もうひとつの電子と対を成す方がより安定である事を示した。この電子対は7年後に提唱されたBCS理論におけるクーパー対に相当する。またこの方程式から得られるパラメーターの比から第一種・第二種超伝導体の区別を与える。 この理論によって、それまでの現象論であるロンドン理論の不足が補われた。ギンツブルグは本業績により2003年ノーベル物理学賞を受賞。ミクロ理論は、J.

新しい!!: ロンドン方程式とギンツブルグ-ランダウ理論 · 続きを見る »

磁場侵入長

磁場侵入長(じばしんにゅうちょう)、略して侵入長(しんにゅうちょう)とは、超伝導体において外部の磁場がどの程度内部に侵入してくるかを表す量で、通常λやλLという形で表記される。表面からλLだけ内側に入ると、磁場は表面での1/eに等しくなる。 磁場侵入長は、ロンドン方程式とアンペールの法則から導き出される(このことから、ロンドンの侵入長と呼ばれることもある)。x軸の正の側に超電導体が置いてあるとして、超伝導体のない側ではz軸の正の向きに磁場B0がかかっているとすると、超伝導体内部の磁場は次の形で表される。 上の式から、λLだけ内側に入ると磁場の大きさが1/eとなることがわかる。 λLは以下のように表される。 これらの式で、m、n、qはそれぞれ粒子の質量、濃度、電荷である。 磁場侵入長は超流動密度によって決まるが、この超流動密度は高温超伝導体の転移温度を決める重要な量である。エネルギーギャップに節のある超伝導体では、磁場と超流動密度が相互に影響するため、絶対零度での侵入長は磁場に依存する。すなわち、絶対零度での侵入長の厳密な測定が高温超伝導の理解のために重要となってくる。超伝導体に固有の磁気構造がない場合、ミュオンスピン分光で侵入長を測定することができる。ミュオンスピンの緩和率σ(T)はλ²(T)に比例するため、侵入長を直接求めることができる。温度によって変化する超伝導体のエネルギーギャップの形に合わせてσ(T)も変化するので、エネルギーギャップの形だけでなく、高温超伝導の起源に迫る鍵ともなりうる。.

新しい!!: ロンドン方程式と磁場侵入長 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

新しい!!: ロンドン方程式と超伝導 · 続きを見る »

量子渦

量子渦(りょうしうず、quantum vortex)とは、超流動や超伝導において現れる位相欠陥である。 量子渦の存在は、1940年代後半、超流動ヘリウムに関してラルス・オンサーガーによって初めて予言された。オンサーガーは量子渦の存在が超流動の循環を記述することを指摘し、超流動相転移が渦の励起を引き起こすことを予想した。オンサーガーによるこれらの考えは、1955年にリチャード・P・ファインマンによってさらに拡張され、1957年にはアレクセイ・アブリコソフによって、第二種超伝導体の相転移を説明するため用いられた。 1950年代後半には、が超流動ヘリウム4中に振動するワイヤを張ることで、量子渦を実験的に観測することに成功し、後に、第二種超伝導体や冷却原子気体のボース=アインシュタイン凝縮においても観測されている。 超流動における量子渦は、循環の量子化に対応し、超伝導における量子渦は、磁束の量子化に対応する。.

新しい!!: ロンドン方程式と量子渦 · 続きを見る »

ここにリダイレクトされます:

ロンドンの侵入の深さロンドンの方程式磁束侵入長

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »