ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ルジャンドル変換

索引 ルジャンドル変換

ルジャンドル変換(ルジャンドルへんかん、Legendre transformation)とは、凸解析において、関数の変数を変えるために用いられる変換である。名前はフランスの数学者、アドリアン=マリ・ルジャンドルに因む。ルジャンドル変換は点と線の双対性、つまり下に凸な関数 は の点の集合によって表現できるが、それらの傾きと切片の値で指定される接線の集合によっても等しく充分に表現できることに基いている。 ルジャンドルは解析力学におけるラグランジアンをハミルトニアンに変換する際にルジャンドル変換を用いた。他にも、熱力学における熱力学関数間の変換など、物理学において広く応用されている。 ルジャンドル変換の一般化としてルジャンドル=フェンシェル変換がある(ルジャンドル=フェンシェル変換については凸共役性を参照)。.

28 関係: 変換 (数学)位置空間と運動量空間余接束ハミルトン力学ハミルトニアンラグランジュ力学フェンシェルの双対性定理アドリアン=マリ・ルジャンドルエポニム (数学)エンタルピーオイラー=ラグランジュ方程式グランドポテンシャル内部エネルギー凸共役性凸解析凸関数共役状態量熱力学ポテンシャル運動エネルギー運動量解析力学自由エネルギー電子光子相互作用接触 (数学)正準変換正準変数正準座標

変換 (数学)

数学的意味での変換(へんかん、transformation)とは、点を他の点に移したり、式を他の式に変えたり、座標を取り替えたりすること。.

新しい!!: ルジャンドル変換と変換 (数学) · 続きを見る »

位置空間と運動量空間

物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、position space)、あるいは実空間(じつくうかん、real space)ないし座標空間(ざひょうくうかん、coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。 点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、momentum space)は、系が持ちうる全ての運動量ベクトル の集合である。 粒子の運動量ベクトルは、粒子の運動に対応し、の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 が与えられたとき、そのフーリエ変換は運動量空間における関数 となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 これらの量や考えは古典物理学と量子物理学を含むすべての(微視的)理論に通底するものである。系は構成粒子の位置または運動量を用いて記述でき、どちらの形式でも考えている系について等価な情報を与える。 位置と運動量の他に、波動に対して定義すると有用な量がある。波数ベクトル (または単に"ベクトル"とも呼ばれる)は長さの逆数の次元を持ち、時間の逆数の次元を持つ角周波数 との類似性を持つ。全ての波数ベクトルの集合を空間という。 通常、位置 は波数 よりも直観的にわかりやすく単純であるが、固体物理学などではその逆のことが言える。 量子力学における位置と運動量の双対性について、基礎的な結果として(ハイゼンベルクの)不確定性原理とが挙げられる。不確定性原理 は、位置と運動量を同時に正確に知ることはできないことを述べている( はそれぞれ位置と運動量の不確定性を表す。 は換算プランク定数である)。ド・ブロイの関係式 は、自由粒子の運動量と波数は互いに比例関係にあることを述べている。 ド・ブロイの関係を念頭に置き、文脈に応じて「運動量」と「波数」という言葉を使い分けることがある。しかしド・ブロイの関係は結晶中において成り立たない。.

新しい!!: ルジャンドル変換と位置空間と運動量空間 · 続きを見る »

余接束

数学、特に微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。それはまた接束の双対束として記述することもできる。.

新しい!!: ルジャンドル変換と余接束 · 続きを見る »

ハミルトン力学

ハミルトン力学(ハミルトンりきがく、英語:Hamiltonian mechanics)は、一般化座標と一般化運動量を基本変数として記述された古典力学である。イギリスの物理学者ウィリアム・ローワン・ハミルトンが創始した。ラグランジュ力学と同様にニュートン力学を再公式化した解析力学の一形式。.

新しい!!: ルジャンドル変換とハミルトン力学 · 続きを見る »

ハミルトニアン

ハミルトニアン(Hamiltonian)あるいはハミルトン関数、特性関数(とくせいかんすう)は、物理学におけるエネルギーに対応する物理量である。各物理系の持つ多くの性質は、ハミルトニアンによって特徴づけられる。名称はイギリスの物理学者ウィリアム・ローワン・ハミルトンに因む。 ここでは、古典力学(解析力学)と量子力学の2つの体系に分けて説明するが、量子力学が古典力学から発展した経緯から、両者は密接に関連する。ハミルトニアンはそれぞれの体系に応じて関数または演算子もしくは行列の形式をとる。例えば、古典力学においてはハミルトニアンは正準変数の関数であり、量子力学では正準変数を量子化した演算子(もしくは行列)の形をとる。.

新しい!!: ルジャンドル変換とハミルトニアン · 続きを見る »

ラグランジュ力学

ラグランジュ力学(英語:Lagrangian mechanics)は、一般化座標とその微分を基本変数として記述された古典力学である。フランスの物理学者ジョゼフ=ルイ・ラグランジュが創始した。後のハミルトン力学と同様にニュートン力学を再定式化した解析力学の一形式である。.

新しい!!: ルジャンドル変換とラグランジュ力学 · 続きを見る »

フェンシェルの双対性定理

数学においてフェンシェルの双対性定理(フェンシェルのそうついせいていり、)は、の名にちなむ、凸函数の理論における一結果である。 ƒ を Rn 上の真凸函数とし、g を Rn を真凹函数とする。このとき、正則性の条件が満たされるなら、 が成り立つ。ここで ƒ * は ƒ の凸共役(フェンシェル=ルジャンドル変換とも呼ばれる)であり、g * は g の凹共役である。すなわち、次が成り立つ。.

新しい!!: ルジャンドル変換とフェンシェルの双対性定理 · 続きを見る »

アドリアン=マリ・ルジャンドル

アドリアン=マリ・ルジャンドル(Adrien-Marie Legendre、1752年9月18日 - 1833年1月10日)は、フランスのパリトゥールーズ出身ともされる。出身の数学者。統計学、数論、代数学、解析学で様々な功績を残した。中でも整数論や楕円積分に大きく貢献したとして名高い。.

新しい!!: ルジャンドル変換とアドリアン=マリ・ルジャンドル · 続きを見る »

エポニム (数学)

ポニム(eponym)は、既に存在する事物の名(とくに人名)にちなんで二次的に命名された言葉のことである。元となった人名などのことを名祖(なおや、eponymous)という。 この項では数学の分野でのエポニムを挙げる。.

新しい!!: ルジャンドル変換とエポニム (数学) · 続きを見る »

エンタルピー

ンタルピー()とは、熱力学における示量性状態量のひとつである。熱含量()とも。エンタルピーはエネルギーの次元をもち、物質の発熱・吸熱挙動にかかわる状態量である。等圧条件下にある系が発熱して外部に熱を出すとエンタルピーが下がり、吸熱して外部より熱を受け取るとエンタルピーが上がる。 名称が似ているエントロピー()とは全く異なる物理量である。.

新しい!!: ルジャンドル変換とエンタルピー · 続きを見る »

オイラー=ラグランジュ方程式

イラー=ラグランジュ方程式(オイラー=ラグランジュほうていしき、Euler–Lagrange equation)は汎関数の停留値を与える関数を求める微分方程式である。 オイラーとラグランジュらの仕事により1750年代に発展した。 単に、オイラー方程式、ラグランジュ方程式とも呼ばれる。 ニュートン力学における運動方程式をより数学的に洗練された方法で定式化しなおしたもので、物理学上重要な微分方程式である。 オイラー=ラグランジュ方程式を基礎方程式としたニュートン力学の定式化をラグランジュ形式の解析力学と呼ぶ。.

新しい!!: ルジャンドル変換とオイラー=ラグランジュ方程式 · 続きを見る »

グランドポテンシャル

ランドポテンシャル()とは、熱力学における示量性状態量の1つである。 統計力学においてはグランドカノニカルアンサンブルと関係付けられる。 グランドポテンシャルはエネルギーの次元を持つ。 記号 J や \Omega で表されることが多い。また、単に熱力学ポテンシャル(ねつりきがくポテンシャル、)と呼ばれることもある。.

新しい!!: ルジャンドル変換とグランドポテンシャル · 続きを見る »

内部エネルギー

内部エネルギー(ないぶエネルギー、)は、系の熱力学的な状態を表現する、エネルギーの次元をもつ示量性状態量の一つである。系が全体として持っている力学的エネルギー(運動エネルギーと位置エネルギー)に対する用語として、内部エネルギーと呼ばれる。 記号は や で表されることが多い。.

新しい!!: ルジャンドル変換と内部エネルギー · 続きを見る »

凸共役性

数学において凸共役(とつきょうやく、)とは、ルジャンドル変換の一般化である。ルジャンドル=フェンシェル変換あるいはフェンシェル変換としても知られる(アドリアン=マリ・ルジャンドルとの名にちなむ)。.

新しい!!: ルジャンドル変換と凸共役性 · 続きを見る »

凸解析

凸解析 (とつかいせき) は、凸関数および凸集合を研究する数学の一分野である。最適化理論の領域の中の凸最小化によく応用される。.

新しい!!: ルジャンドル変換と凸解析 · 続きを見る »

凸関数

凸関数(とつかんすう、convex function)、下に凸関数 とは、ある区間で定義された実数値関数 で、区間内の任意の 2 点 と開区間 内の任意の に対して を満たすものをいう。言い換えれば、エピグラフ(グラフ上およびグラフの上部の点の集合)が凸集合である関数である。より一般に、ベクトル空間の凸集合上定義された関数に対しても同様に定義する。 また、狭義凸関数とは、任意の異なる 2 点 と開区間 内の任意の に対して を満たす関数である(従って、下に凸な関数の事である)。 が凸関数のとき、 を凹関数(おうかんすう、)と呼ぶ。凸関数を「下に凸な関数」、凹関数を「上に凸な関数」と称することもある。.

新しい!!: ルジャンドル変換と凸関数 · 続きを見る »

共役

共軛、共役(きょうやく)は2つのものがセットになって結びついていること、同様の働きをすること。共軛の「軛」(くびき)は、人力車や馬車において2本の梶棒を結びつけて同時に動かすようにするための棒のことである。「軛」が常用漢字表外であったため、音読みの同じ「役」の字で代用され、現在では共役と書かれることが多い。いくつかの分野で用法がある。.

新しい!!: ルジャンドル変換と共役 · 続きを見る »

状態量

態量(じょうたいりょう、state quantity)とは、熱力学において、系(巨視的な物質または場)の状態だけで一意的に決まり、過去の履歴や経路には依存しない物理量のことである。元来は熱力学的平衡状態にある系だけで定義されるものだが,非平衡状態にも拡張されて用いられる。.

新しい!!: ルジャンドル変換と状態量 · 続きを見る »

熱力学ポテンシャル

熱力学ポテンシャル(ねつりきがくポテンシャル、thermodynamic potential)とは、熱力学において、系の平衡状態における熱力学的性質の情報を全て持つ示量性状態量である。完全な熱力学関数とも呼ばれる。 ポテンシャルという名前がつけられているが、エネルギーの次元をもつことに注意。.

新しい!!: ルジャンドル変換と熱力学ポテンシャル · 続きを見る »

運動エネルギー

運動エネルギー(うんどうエネルギー、)は、物体の運動に伴うエネルギーである。物体の速度を変化させる際に必要な仕事である。英語の は、「運動」を意味するギリシア語の (kinesis)に由来する。この用語は1850年頃ウィリアム・トムソンによって初めて用いられた。.

新しい!!: ルジャンドル変換と運動エネルギー · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: ルジャンドル変換と運動量 · 続きを見る »

解析力学

解析力学(かいせきりきがく、英語:analytical mechanics)とは、ニュートン力学を数学の解析学の手法を用いて記述する、数学的に洗練された形式。解析力学の体系は基本的にはラグランジュ力学とハミルトン力学により構成される。 力のつりあいについてのダランベールの原理から始め、つりあいを微小な変位による仕事の関係式に置き換える仮想仕事の原理によってエネルギーの問題に移した。 幾何光学における変分原理であるフェルマーの原理からの類推で、古典力学において最小作用の原理(モーペルテューイの原理)が発見された。これにより、力学系の問題は、作用積分とよばれる量を最小にするような軌道をもとめる数学の問題になった。 座標を一般化座標に拡張し、ラグランジュ方程式が導き出された。 さらに、ラグランジアンから一般化運動量を定め、座標と運動量のルジャンドル変換によって、ハミルトン力学が導かれた。 ラグランジュ方程式は微分方程式を与えるのに対して、ハミルトンの正準方程式は積分を与える。 さらにこれから、ハミルトン・ヤコビの偏微分方程式が、得られる。 ラグランジュ形式は微分幾何学とも相性がよく、相対性理論の分野では必須である。 ハミルトン形式はその後の量子力学とくに行列力学へと続く。.

新しい!!: ルジャンドル変換と解析力学 · 続きを見る »

自由エネルギー

自由エネルギー(じゆうエネルギー、)とは、熱力学における状態量の1つであり、化学変化を含めた熱力学的系の等温過程において、系の最大仕事(潜在的な仕事能力)、自発的変化の方向、平衡条件などを表す指標となるChang『生命科学系のための物理化学』 pp.63-65アトキンス『物理化学(上)』 pp.120-125。 自由エネルギーは1882年にヘルマン・フォン・ヘルムホルツが提唱した熱力学上の概念で、呼称は彼の命名による。一方、等温等圧過程の自由エネルギーと化学ポテンシャルとの研究はウィラード・ギブズにより理論展開された。 等温等積過程の自由エネルギーはヘルムホルツの自由エネルギー()と呼ばれ、等温等圧過程の自由エネルギーはギブズの自由エネルギー()と呼びわけられる。ヘルムホルツ自由エネルギーは F で表記され、ギブズ自由エネルギーは G で表記されることが多い。両者の間には G.

新しい!!: ルジャンドル変換と自由エネルギー · 続きを見る »

電子光子相互作用

電子光子相互作用(でんしこうしそうごさよう)とは、電子と光(電磁場、光子)との間に働く相互作用である。.

新しい!!: ルジャンドル変換と電子光子相互作用 · 続きを見る »

接触 (数学)

数学において二つの函数が点 において -次の(あるいは -位の)接触(せっしょく、contact)をなすとは、 においてそれらの値および -階までの導函数の値が一致するときに言う。これは同値関係をなし、その同値類は一般にと呼ばれる。 点における高次の接触は、曲線などの幾何学的対象についても定義される(ここに、微分は弧長変数に関するものを考える)。この場合には、接触は接吻 とも呼ばれ、接する (tangent) という性質を一般化するものである。 曲線とその上の点が与えられたとき、ある固定した曲線族に属するとは、その曲線上の点において曲線族の中で可能な最も高次の接触を持つ曲線を言う。例えば接線は、直線族に属する接触曲線として、与えられた曲線と一次の接触を持つものである。また例えば曲線のは、円族の中で、与えられた曲線と二次の接触をなす(接触角が一致し曲率も等しい)ものを言う。他も同様。 は、奇数次元多様体上で定義される特定の一次微分形式を言う(を参照)。は座標変換と関係し、古典力学において重要である(ルジャンドル変換の項を参照せよ)。 多様体同士の接触はしばしばにおいて研究され、そこでの接触の分類として A-系列(: 交点,: 接点,: 接吻点, …)に加えて、球面と高次の接触を持つことによって定義されるを含む D-系列がある。 曲線と円との一次の接触 (tangent) 曲線と円との二次の接触 (osculating) 曲線と円との、曲線の頂点における、三次の接触.

新しい!!: ルジャンドル変換と接触 (数学) · 続きを見る »

正準変換

ハミルトン形式の解析力学において、正準変換(せいじゅんへんかん、canonical transformation)とは、正準変数を新たなハミルトンの運動方程式を満たす新しい正準変数に写す変数変換。正準変換の下では、正準変数である一般化座標と一般化運動量は互いに混ざり合うことができ、等価な役割を果たす。また、正準変換はポアソン括弧を不変に保つ性質を持つ。幾何学的な観点からは、相空間をシンプレクティック多様体として見做した場合、基本 2形式を保つシンプレクティック同相写像に対応する。.

新しい!!: ルジャンドル変換と正準変換 · 続きを見る »

正準変数

正準変数(せいじゅんへんすう)とは、解析力学において物体の物理量を表す基本変数として用いられる位置と運動量(の組)をいう。しばしば位置を表す座標は文字q 、運動量はp で表される。 ニュートン力学やラグランジュ力学においては基本変数が位置と、その時間微分である速度であったが、ハミルトン力学においては座標(一般化座標)と運動量(一般化運動量)が用いられる。 ラグランジアンL は引数に位置と速度を取る。ここでL にルジャンドル変換 を施すことで位置と運動量を引数とする関数ハミルトニアンが得られ、正準方程式 が得られる。.

新しい!!: ルジャンドル変換と正準変数 · 続きを見る »

正準座標

数学や古典力学において、正準座標(canonical coordinates)は、任意に与えられた点の(相空間の中の系を特定する)ある時間での物理系を記述することのできる座標系である。正準座標は、古典力学でのハミルトン定式化で使われる。密接に関連する考え方は、量子力学の中にも現れる。詳細は、(Stone–von Neumann theorem)や正準交換関係を参照。 ハミルトン力学を一般化してシンプレクティック幾何学とし、正準変換を一般化し(contact transformation)とすると、古典力学の正準座標の 19世紀での定義は、20世紀の多様体上の余接バンドルのより抽象的な定義へ一般化することができる。.

新しい!!: ルジャンドル変換と正準座標 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »