ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ディラック定数

索引 ディラック定数

換算プランク定数(かんさんプランクていすう、reduced Planck constant)またはまれにディラック定数(ディラックていすう、Dirac's constant) は、プランク定数 を で割った値を持つ定数である。その値は である(2014CODATA推奨値)。 は「エイチ・バー」と読む。.

72 関係: 原子単位系ほとんど整数単位の換算一覧古典電子半径Ħ密度行列不確定性原理並進演算子 (量子力学)幾何学単位系二原子分子位置空間と運動量空間微細構造定数マグノンハートリーポール・ディラックボーア半径ボーア磁子ボーア=ゾンマーフェルトの量子化条件トムソン散乱トンネル効果トーマス=フェルミ模型ブロッホの定理プランク単位系プランク定数プランク密度プランクエネルギープランク質量プランク長プランク電荷プランク温度プランク時間プラズモンパウリ行列ウィック回転ウィグナー関数エネルギー演算子エントロピーオーバーハウザー効果カシミール効果クライン=仁科の公式グロス=ピタエフスキー方程式シュレーディンガー方程式ストローク符号スカラー場の理論光子磁気モーメント群速度結合定数 (物理学)結晶運動量物理学に関する記事の一覧...物理定数運動量演算子調和振動子重力相互作用重合体量の次元量子力学量子ゼノン効果量子渦自由電子自然放出虚時間SI併用単位Unicodeの互換文字White & Nerdy核磁気共鳴水素原子におけるシュレーディンガー方程式の解波数振動子強度文字様記号時間微分1+2+3+4+… インデックスを展開 (22 もっと) »

原子単位系

原子単位系(げんしたんいけい、atomic units)は、素粒子物理学や原子物理学、量子化学において、数式の表現を簡潔にするために採用される自然単位系。1927年にダグラス・ハートリーによって提案された。 長さにボーア半径 を、質量に電子の静止質量 を、作用にディラック定数 を、電荷に電気素量 を、エネルギーにハートリー かリュードベリ を用い、これらのうち4つを基本単位として選んでその他の物理量は組立単位とする。したがって、原子単位系では時間は組立単位 で表現される。 原子単位系には、エネルギーの基本単位としてハートリー( または )を用いるハートリー原子単位系の他、リュードベリ( または )を用いるリュードベリ原子単位系などが存在しこちらもしばしば用いられる。 単位を表す記号として、 の代わりに、すべて の省略形である a.u. で表すことがある。この場合、「1 a.u.(長さ)」のように、括弧書きで物理量を明らかにする必要がある。.

新しい!!: ディラック定数と原子単位系 · 続きを見る »

ほとんど整数

ある数がほとんど整数(ほとんどせいすう、almost integer)であるとは、整数ではないが、整数に非常に近いことを意味する。どれほど近ければ十分であるのか明確な決まりはないが、一見して整数に近いとは分からないのに、近似値を計算すると驚くほど整数に近い数で、小数点以下の部分が.000…」または.999…」のように、0か9が数個連続する場合、このように表現される。例えば、「インドの魔術師」の異名をもつシュリニヴァーサ・ラマヌジャンは など、整数に近い数の例をいくつか与えた。また、黄金比 の累乗、例えば は整数に近い。整数に近い数を与えることは、単なる趣味の範疇であることが多いが、意義深い数学的な理論が背景にあることも少なくはない。.

新しい!!: ディラック定数とほとんど整数 · 続きを見る »

単位の換算一覧

単位の換算一覧(たんいのかんさん いちらん)は、さまざまな単位を相互に換算するための一覧http://www.nmij.jp/library/units/si/。単位の換算、国際単位系、SI組立単位、CGS単位系、尺貫法、ヤード・ポンド法、度量衡、計量単位一覧、次元解析、SI接頭辞なども参照のこと。.

新しい!!: ディラック定数と単位の換算一覧 · 続きを見る »

古典電子半径

古典電子半径(こてんでんしはんけい、classical electron radius)とは、ローレンツの電子論(ローレンツのでんしろん、Lorentz's theory of electron)の中で論じられる古典的な電子の半径の事で、CODATAから発表される物理定数の1つである。その値は と与えられる(2014CODATA推奨値)。ここで は電気素量、 は真空中の光速、 は電子の質量、 は真空の誘電率である。.

新しい!!: ディラック定数と古典電子半径 · 続きを見る »

Ħ

Ħ, ħはラテン文字のHにバーを付した文字である。マルタ語で無声咽頭摩擦音を表すのに使用する(アラビア文字のحに相当)。.

新しい!!: ディラック定数とĦ · 続きを見る »

密度行列

密度行列(みつどぎょうれつ、density matrix)は、量子力学における混合状態を表現するために使われる行列である。そこで本項ではまず混合状態とは何かについて解説し、その後に密度行列について解説する。.

新しい!!: ディラック定数と密度行列 · 続きを見る »

不確定性原理

不確定性原理(ふかくていせいげんり、Unschärferelation Uncertainty principle)は、量子力学に従う系の物理量\hatを観測したときの不確定性と、同じ系で別の物理量\hatを観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは\hat、\hatがそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルグ自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なるテクニカル・タームであり、観測機のようなマクロな古典的物体とミクロな量子物体との間の任意の相互作用を意味する。したがって例えば、実験者が観測機に表示された観測値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる観測値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。.

新しい!!: ディラック定数と不確定性原理 · 続きを見る »

並進演算子 (量子力学)

量子力学における並進演算子とは、ある方向にある大きさだけ粒子や場を移動させる演算子のこと。より具体的には、いかなる変位ベクトル においても対応する並進演算子 \hat(\boldsymbol) が存在し、 の大きさによって粒子や場を移動させる。例えばもし \hat(\boldsymbol) が位置 に位置する粒子に作用すると、その結果として粒子の位置は になる。 並進演算子は線形かつユニタリーである。並進演算子は運動量演算子と密接に関係している。たとえば、 方向に無限小だけ移動させる並進演算子は、運動量演算子の 成分と単純な関係性を持つ。このことにより並進演算子がハミルトニアンと可換、つまり物理法則が並進不変であるとき、運動量保存則が保たれる。これはネーターの定理の一つの例である。.

新しい!!: ディラック定数と並進演算子 (量子力学) · 続きを見る »

幾何学単位系

幾何学単位系(きかがくたんいけい)とは、物理学、特に一般相対性理論において用いられる単位系である。.

新しい!!: ディラック定数と幾何学単位系 · 続きを見る »

二原子分子

二原子分子(にげんしぶんし、diatomic molecule)は、2個の原子で作られた分子である。接頭辞の"di-"はギリシア語で2を意味する。  .

新しい!!: ディラック定数と二原子分子 · 続きを見る »

位置空間と運動量空間

物理学や幾何学では、密接に関連した2つのベクトル空間がある。これは通常は3次元であるが、一般的にはどんな有限次元の空間でもよい。 位置空間(いちくうかん、position space)、あるいは実空間(じつくうかん、real space)ないし座標空間(ざひょうくうかん、coordinate space)などとも呼ばれる、は空間の全ての位置ベクトル の集合で、長さの次元を持つ。位置ベクトルは空間中の場所を定義する。ある位置ベクトルは位置空間上の一つの点に対応づけられる。 点粒子の運動は時間を変数として位置ベクトルを与える関数によって表され、関数によって与えられる位置ベクトル全体の集合は、粒子の描く軌道に対応づけられる。 運動量空間(うんどうりょうくうかん、momentum space)は、系が持ちうる全ての運動量ベクトル の集合である。 粒子の運動量ベクトルは、粒子の運動に対応し、の次元を持つ。 数学的には、位置と運動量の双対性はポントリャーギン双対性の1つの例である。特に位置空間で関数 が与えられたとき、そのフーリエ変換は運動量空間における関数 となる。逆に、運動量空間の関数を逆変換したものは位置空間の関数となる。 これらの量や考えは古典物理学と量子物理学を含むすべての(微視的)理論に通底するものである。系は構成粒子の位置または運動量を用いて記述でき、どちらの形式でも考えている系について等価な情報を与える。 位置と運動量の他に、波動に対して定義すると有用な量がある。波数ベクトル (または単に"ベクトル"とも呼ばれる)は長さの逆数の次元を持ち、時間の逆数の次元を持つ角周波数 との類似性を持つ。全ての波数ベクトルの集合を空間という。 通常、位置 は波数 よりも直観的にわかりやすく単純であるが、固体物理学などではその逆のことが言える。 量子力学における位置と運動量の双対性について、基礎的な結果として(ハイゼンベルクの)不確定性原理とが挙げられる。不確定性原理 は、位置と運動量を同時に正確に知ることはできないことを述べている( はそれぞれ位置と運動量の不確定性を表す。 は換算プランク定数である)。ド・ブロイの関係式 は、自由粒子の運動量と波数は互いに比例関係にあることを述べている。 ド・ブロイの関係を念頭に置き、文脈に応じて「運動量」と「波数」という言葉を使い分けることがある。しかしド・ブロイの関係は結晶中において成り立たない。.

新しい!!: ディラック定数と位置空間と運動量空間 · 続きを見る »

微細構造定数

微細構造定数(びさいこうぞうていすう、)は、電磁相互作用の強さを表す物理定数であり、結合定数と呼ばれる定数の一つである。電磁相互作用は4つある素粒子の基本相互作用のうちの1つであり、量子電磁力学をはじめとする素粒子物理学において重要な定数である。1916年にアルノルト・ゾンマーフェルトにより導入されたNIST "Current advances: The fine-structure constant and quantum Hall effect"。記号は で表される。無次元量で、単位はない。 微細構造定数の値は である(2014CODATA推奨値CODATA Value)。微細構造定数の逆数(測定値)もよく目にする量で、その値は であるCODATA Value。.

新しい!!: ディラック定数と微細構造定数 · 続きを見る »

マグノン

マグノン()は、結晶格子中の電子のスピンの構造を量子化した準粒子である。一方、結晶格子中での原子やイオンの振動を量子化した準粒子は、フォノンという。量子力学における波の描像では、マグノンはスピン波を量子化したものと見なすことができる。準粒子として、マグノンは一定の量のエネルギーと格子運動量を運搬する。プランク定数を2πで割ったディラック定数のスピンを持つ。.

新しい!!: ディラック定数とマグノン · 続きを見る »

ハートリー

ハートリーエネルギー()は、原子や電子のスケールを扱う分野(量子論、原子物理学、量子化学など)で用いられる原子単位系において、エネルギーの単位となる物理定数である。 名称は英国の数理物理学者ダグラス・ハートリーに由来する。 記号は一般に で表される。 ハートリーエネルギーの値は である(2014 CODATA推奨値CODATA Value)。 ハートリーエネルギーは、ボーア半径 に等しい距離にある、電気素量 に等しい電気量をもつ2つの粒子の静電エネルギーで定義され、国際量体系(ISQ)においては と表される。 ここで、 はプランク定数(ディラック定数)、 は真空中の光速度、 は微細構造定数である。 ガウス単位系は異なる量体系に基づいているので と表される。 ハートリー原子単位系においては と表される。.

新しい!!: ディラック定数とハートリー · 続きを見る »

ポール・ディラック

ポール・エイドリアン・モーリス・ディラック(Paul Adrien Maurice Dirac, 1902年8月8日 - 1984年10月20日)はイギリスのブリストル生まれの理論物理学者。量子力学及び量子電磁気学の基礎づけについて多くの貢献をした。1933年にエルヴィン・シュレーディンガーと共にノーベル物理学賞を受賞している。 彼はケンブリッジ大学のルーカス教授職を務め、最後の14年間をフロリダ州立大学の教授として過ごした。.

新しい!!: ディラック定数とポール・ディラック · 続きを見る »

ボーア半径

ボーア半径(ボーアはんけい、Bohr radius)は、原子、電子のようなミクロなスケールを扱う分野(量子論、原子物理学、量子化学など)で用いられる原子単位系において、長さの単位となる物理定数である。名称はデンマークの原子物理学者ニールス・ボーアに由来する。記号は一般に や で表される。 ボーア半径の値は である(2014 CODATA推奨値CODATA Value)。 ボーア半径はボーアの原子模型において、基底状態にある水素原子の半径で定義され、国際量体系(ISQ)においては と表される。 ここで、 はプランク定数(ディラック定数)、 は真空中の光速度、 は微細構造定数、 は電気素量、 は真空の誘電率、 は電子の質量である。 ガウス単位系は異なる量体系に基づいているので と表される。 原子単位系においては と表される。.

新しい!!: ディラック定数とボーア半径 · 続きを見る »

ボーア磁子

ボーア磁子(ボーアじし、)とは、原子物理学において、電子の磁気モーメントの単位となる物理定数である。1913年にルーマニアの物理学者が発見し、その2年後にデンマークのニールス・ボーアによって再発見された。そのためボーア=プロコピウ磁子と呼ばれることもある。通常は記号 で表される。.

新しい!!: ディラック定数とボーア磁子 · 続きを見る »

ボーア=ゾンマーフェルトの量子化条件

ボーア=ゾンマーフェルトの量子化条件(-りょうしかじょうけん、Bohr-Sommerfeld quantum condition)とは物理学、特に量子力学において多自由度の周期運動に対する量子条件である。前期量子論において、1913年にデンマークの物理学者ニールス・ボーアが提唱したボーアの量子条件の一般化となっている。ボーアの量子条件は1自由度の周期運動である円軌道の場合に限られていたが、ドイツの物理学者アーノルド・ゾンマーフェルトが1916年に正準形式の解析力学に基づく形で、多自由度の周期運動にまで拡張した。米国のや日本の石原純も同様な結果を得ており、ゾンマーフェルト=ウィルソンの量子化条件とも呼ばれる。ボーア=ゾンマーフェルトの理論は、ボーアの原子模型では円軌道に限られていた水素原子の電子軌道として、楕円軌道が存在することを示すともに、正常ゼーマン効果、シュタルク効果、微細構造に対する一定の説明を与えることを可能にした。.

新しい!!: ディラック定数とボーア=ゾンマーフェルトの量子化条件 · 続きを見る »

トムソン散乱

トムソン散乱(トムソンさんらん、)とは、ニュートン力学的に考察する事の出来る束縛を受けていない自由な荷電粒子による、古典的な電磁波の散乱で、弾性散乱の一種である。イギリスの物理学者であるJ. J. トムソンが、1個の電子に対して一定の方向から光が当たる時、どの方向にどれだけ光が散乱されるかを算定した事に因んで名付けられた。.

新しい!!: ディラック定数とトムソン散乱 · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: ディラック定数とトンネル効果 · 続きを見る »

トーマス=フェルミ模型

トーマス=フェルミ模型(トーマス=フェルミもけい、Thomas–Fermi (TF) model)とは、シュレーディンガー方程式が導入されて間もなく、それを半古典的に扱った多体系の電子構造についての量子力学的な理論のことである。ルウェリン・トーマスとエンリコ・フェルミに因んで名づけられた。波動関数から離れて電子密度を用いて定式化したもので、密度汎関数理論の原型ともなった。トーマス=フェルミ模型は、核電荷が無限大の極限においてのみ正確な結果を与える。現実的な系を考えるために近似を用いると、定量性に乏しい予言しかできず、原子の殻構造や固体のフリーデル振動のような密度についてのいくつかの一般的性質を再現することもできなくなる。しかし定性的な傾向を解析的に抽出でき、またモデルを解くことが簡単であることから、多くの分野で応用されている。トーマス=フェルミ理論により表現された運動エネルギーは、オービタルフリー密度汎関数理論のようなより洗練された密度近似運動エネルギーの一つとしても使われている。 1927年にトーマスとフェルミは独立に、この統計的モデルを用いて原子中の電子分布を近似した。実際の電子は原子中で不均一に分布しているが、近似的に電子は微小体積要素 に(局所的に)それぞれ均一に分布しており、電子密度 は各 で異なっているとする。.

新しい!!: ディラック定数とトーマス=フェルミ模型 · 続きを見る »

ブロッホの定理

量子力学や物性物理学におけるブロッホの定理(ブロッホのていり、Bloch's theorem)とは、ハミルトニアンが空間的な周期性(並進対称性)をもつ場合に、その固有関数が満たす性質を表した定理のこと。1928年に、フェリックス・ブロッホによって導出された。 結晶は基本格子ベクトルだけ並進すると自分自身と重なり合うため、並進対称性を持つ。よって結晶のエネルギーバンドを計算する際にブロッホの定理は重要となる。.

新しい!!: ディラック定数とブロッホの定理 · 続きを見る »

プランク単位系

プランク単位系(プランクたんいけい)は、マックス・プランクによって提唱された自然単位系である。 プランク単位系では以下の物理定数の値を 1 として定義している。 プランク単位系は物理学者によって「神の単位」と半ばユーモラスに言及される。自然単位系は「人間中心的な自由裁量が除かれた単位系」であり、ごく一部の物理学者は「地球外の知的生命体も同じ単位系を使用しているに違いない」と信じている。 プランク単位系は、物理学者が問題を再構成するのに役立つ。.

新しい!!: ディラック定数とプランク単位系 · 続きを見る »

プランク定数

プランク定数(プランクていすう、プランクじょうすう、)は、光子のもつエネルギーと振動数の比例関係をあらわす比例定数のことで、量子論を特徴付ける物理定数である。量子力学の創始者の一人であるマックス・プランクにちなんで命名された。作用の次元を持ち、作用量子とも呼ばれている。SIにおける単位はジュール秒(記号: J s)である。.

新しい!!: ディラック定数とプランク定数 · 続きを見る »

プランク密度

プランク密度(プランクみつど、記号: ρP)は、プランク単位系における密度の単位である。その値は以下のように与えられる。 ここで、 プランク密度は非常に大きな値で、1000億個の銀河を1つの原子核の中に押し込めたときの密度に相当する。ビッグバンからプランク時間だけ経ったときの宇宙の密度はプランク密度に近いと考えられている。.

新しい!!: ディラック定数とプランク密度 · 続きを見る »

プランクエネルギー

プランクエネルギー(Planck energy)は、プランク単位系のエネルギーの単位である。プランクエネルギー は、次式で定義される。 ここで、 はプランク質量、 は真空中の光速、\hbar はディラック定数、 は万有引力定数である。 プランクエネルギーは、質量とエネルギーの等価性を表すアインシュタインの方程式 ''E''.

新しい!!: ディラック定数とプランクエネルギー · 続きを見る »

プランク質量

プランク質量(プランクしつりょう、Planck mass)は、プランク単位系における質量の単位である。プランク質量 mP の値は以下である。 ここで、括弧内に書かれた数字は、最後の2桁についての標準不確かさを示す。つまり、 という意味である。c は真空中の光速度、\hbarはディラック定数、G は万有引力定数である。 プランク質量はコンプトン波長を\piで割ったものとシュヴァルツシルト半径とが一致する質量である。その長さはプランク長である。 他の自然単位の値が非常に小さいか大きいかであるのとは異なり、プランク質量の値はほぼ人間が取り扱えるスケール内にある。すなわち、1プランク質量は一般的なコピー用紙(坪量 64g)を 1mm×0.3mm に切ったものの質量くらいである。.

新しい!!: ディラック定数とプランク質量 · 続きを見る »

プランク長

プランク長(プランクちょう、Planck length)は、長さのプランク単位である。記号 \ell_P で表す。コンプトン波長を \pi で割ったものとシュワルツシルト半径とが等しい長さとなる質量で定義される。このときの質量をプランク質量という。.

新しい!!: ディラック定数とプランク長 · 続きを見る »

プランク電荷

プランク電荷(プランクでんか)は、プランク単位系における電荷の単位である。プランク電荷は、約1.875 5459 × 10−18 クーロンである。 プランク電荷 q_ は、c を真空中の光速度 、\hbar をディラック定数、\epsilon_ を真空の誘電率とするとき、次式で表される。 また、プランク電荷 q_ は、e を電気素量、\alpha を微細構造定数とするとき、次式で表される。.

新しい!!: ディラック定数とプランク電荷 · 続きを見る »

プランク温度

プランク温度(プランクおんど、Planck temperature)は、プランク単位系における温度の単位である。プランク温度 は、次のように表される。 ここで、 はプランク質量、 は真空中の光速度、\hbarはディラック定数、 はボルツマン定数、 は万有引力定数である。 1プランク温度は、ビッグバンの瞬間から1プランク時間経過したときの宇宙の温度である。1プランク温度以上の温度で物理的に意味のあるものは知られていないため、プランク単位系において温度は0(絶対零度)から1(プランク温度)のスケールで表される。例えば、.

新しい!!: ディラック定数とプランク温度 · 続きを見る »

プランク時間

プランク時間(プランクじかん、Planck time、記号: )は、マックス・プランクによって提唱されたプランク単位系(自然単位系の一つ)における基本単位の内、時間について定義されたものである。 その値はプランク長と真空中の光速によって一意に定まり、 である。ここで、\hbar はディラック定数、 は万有引力定数、 は真空中の光速である。また、参考の為に の長さをプランク時間を単位として表すと約 となる。 プランク時間は光子が光速でプランク長を移動するのにかかる時間であり、なんらかの物理的意味を持ちうる最小の時間単位である。プランク長、プランク時間のような短い単位においては古典的理論は有効ではなく、量子論が重要となる。.

新しい!!: ディラック定数とプランク時間 · 続きを見る »

プラズモン

プラズモン()とは、プラズマ振動の量子であり、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞っている状態をいう。.

新しい!!: ディラック定数とプラズモン · 続きを見る »

パウリ行列

パウリ行列(パウリぎょうれつ, Pauli matrices)、パウリのスピン行列(パウリのスピンぎょうれつ, Pauli spin matrices)とは、下に挙げる3つの2×2複素行列の組みのことである猪木、河合(1994)、第7章J.J Sakurai and Jim Napolitano(2010), chapter 3。(シグマ)で表記されることが多い。量子力学のスピン角運動量や、部分偏極状態の記述方法に関連が深い。1927年に物理学者ヴォルフガング・パウリによって、スピン角運動量の記述のために導入された。 \sigma_1.

新しい!!: ディラック定数とパウリ行列 · 続きを見る »

ウィック回転

論物理学において、ウィック回転(ウィックかいてん、Wick rotation)とは、ミンコフスキー空間で発生する問題を回避するために、ミンコフスキー空間上の実変数を虚数に置き換えて、ユークリッド空間上の変数へ変換する操作である。この変換は量子力学における問題を他の分野と関連付ける際にも用いられる。この変換が回転(rotation)と呼ばれるのは、複素平面上で実軸から虚軸へ位相π/2回転させることを意味している。1954年にイタリアの物理学者、ジャンカルロ・ウィックによって初めて導入された。.

新しい!!: ディラック定数とウィック回転 · 続きを見る »

ウィグナー関数

ウィグナー関数(ウィグナーかんすう )とは、ユージン・ウィグナーにより1932年に導入された、古典統計力学を量子補正するための関数である。その目標は、シュレーディンガー方程式に表われる波動関数を位相空間上の確率分布と結びつけることであった。ウィグナーの擬確率分布関数()、ウィグナー・ビレ分布()とも。 ウィグナー関数は量子力学的波動関数 のすべての空間的自己相関の母関数である。 従って、ウィグナー関数と密度行列との間の写像により、実位相空間上の関数とヘルマン・ワイルが1927年に導入したエルミート演算子とを表現論的な文脈で対応づけられる()。ウィグナー関数は密度行列をしたものとみなすことができ、よって密度行列の位相空間上での表現とみなせる。1948年、によって独立にスペクトログラムの一種、信号エネルギーの局所時間・周波数表示方法として再導入された。 1949年、は量子化された運動量の母関数として再導入したウィグナー関数を用いて全ての量子期待値を計算する方法を確立し、位相空間上における量子力学の基礎を築いた(を参照)。統計力学、量子化学、量子光学、古典光学、および電子工学、地震学、音楽の時間周波数解析、生物学のスペクトログラム、合成音声、エンジンの設計などの信号処理を行なう幅広い分野で応用されている。.

新しい!!: ディラック定数とウィグナー関数 · 続きを見る »

エネルギー演算子

ネルギー演算子(エネルギーえんざんし、energy operator)とは、量子力学において、系の波動関数に作用することでエネルギーを定義する演算子(作用素)である。.

新しい!!: ディラック定数とエネルギー演算子 · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: ディラック定数とエントロピー · 続きを見る »

オーバーハウザー効果

ーバーハウザー効果(オーバーハウザーこうか、Overhauser effect)とは、あるスピンの磁気共鳴の遷移を共鳴周波数の電磁波を照射したときに、そのスピンと磁気的な相互作用している別のスピンの磁気共鳴の強度が変化する現象である。発見の経緯から単にオーバーハウザー効果といった場合には、照射される共鳴線が電子スピン共鳴である場合を指し、照射される共鳴線が核磁気共鳴である場合には核オーバーハウザー効果(nuclear Overhauser effect、アクロニムでNOEと称されることが多い)と呼ばれる。.

新しい!!: ディラック定数とオーバーハウザー効果 · 続きを見る »

カシミール効果

ミール効果(カシミールこうか)は物理現象の一つ。 非常に小さい距離を隔てて設置された二枚の平面金属板が真空中で互いに引き合う現象を、静的カシミール効果という。また、二枚の金属板を振動させると光子が生じる。これを動的カシミール効果という。以下では、静的カシミール効果について述べる。 金属板どうしの距離が大きいと効果は極端に小さくなるが、距離が小さければ効果は測定可能な大きさとなる。例えば、距離が 10nm(原子の大きさの100倍程度)のとき、カシミール効果は一気圧と同じ力を与える。正確な値は表面の幾何学的構造や他の因子に依存する。 カシミール効果は物体仮想粒子の相互作用として表現することができる。効果の大きさは物体の間に介在する量子化された場の零点エネルギーを使って計算できる。現在の理論物理学では、カシミール効果は chiral bag model において重要な役割を果たしている。また応用物理学では、非常に小さい部品を扱うナノテクノロジーの分野でますます重要になっている。.

新しい!!: ディラック定数とカシミール効果 · 続きを見る »

クライン=仁科の公式

ライン=仁科の公式(クライン=にしなのこうしき、)は、量子電磁力学の最低次での、束縛を受けていない自由電子による光散乱の散乱断面積を与える関係式である。可視光など低周波数領域ではトムソン散乱となり、X線やガンマ線などの高周波数領域ではコンプトン散乱となる。1929年にスウェーデンの物理学者であるオスカル・クラインと日本の物理学者である仁科芳雄の2氏により導かれた。これはディラック方程式を用いた量子電磁力学による初期の研究成果であり、相対論と量子論の効果を考慮する事で光散乱の精密な関係式が得られたものである。クライン=仁科の公式が導かれる以前にも、電子の発見者でもあるイギリスの物理学者のJ. J. トムソンによって、古典的な力学及び電磁気学であるニュートン力学と古典電磁気学に基づいた散乱断面積の式(トムソンの公式)が導かれていたが、散乱実験の結果はトムソンの公式では説明が不可能な程の大きなずれを有していた。これは、短波長領域では当時まだ知られていなかったコンプトン散乱がトムソン散乱に比して強くなる為であるが、1923年にアメリカの物理学者であるアーサー・コンプトンによってコンプトン効果による波長のずれを求める公式が示され、後にその公式を考慮に入れて散乱断面積を計算した結果、実験の結果と完全に一致する公式となるクライン=仁科の公式が導かれる事となった。 入射光子の波長を 、散乱光子の波長を とすると、散乱角 の方向への微分断面積は で与えられる。但し、 は微細構造定数、 は電子のコンプトン波長で、それぞれ真空の誘電率 と真空中の光速 や電気素量 及び電子の質量 とプランク定数 やディラック定数 を用いて と定義される物理定数である。コンプトン効果により、散乱光子の波長は入射光子の波長と散乱角によって決まり となる。 長波長領域 では、光子の波長の比が となり、微分断面積は となる。また、古典電子半径 を と定義してクライン=仁科の公式を表せば となってトムソンの公式が得られる。.

新しい!!: ディラック定数とクライン=仁科の公式 · 続きを見る »

グロス=ピタエフスキー方程式

=ピタエフスキー方程式(グロス=ピタエフスキーほうていしき、Gross–Pitaevskii equation; GPE)は、ボソン間相互作用が擬ポテンシャルとして表される理想的なボソン多体系の、ハートリー=フォック近似の下での基底状態を記述するモデルである。 グロス=ピタエフスキー方程式の名前は、とに因む。グロス=ピタエフスキー方程式は、グロスおよびピタエフスキーの頭文字を取ってしばしばGP方程式と呼ばれる。あるいは更に短縮してGPと呼ぶこともある。 and Lev Petrovich Pitaevskii) describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model. --> ハートリー=フォック近似において 体のボソン系全体を表す波動関数 は、個々のボソンに対応する波動関数たち の積状態として表すことができる。 \Psi(\boldsymbol_1, \boldsymbol_2, \dots, \boldsymbol_N).

新しい!!: ディラック定数とグロス=ピタエフスキー方程式 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: ディラック定数とシュレーディンガー方程式 · 続きを見る »

ストローク符号

トローク(stroke)は、ダイアクリティカルマーク(発音区別符号)の一種で、文字を横切る斜線ないし横棒である。.

新しい!!: ディラック定数とストローク符号 · 続きを見る »

スカラー場の理論

論物理学において、スカラー場の理論(スカラーばのりろん、scalar field theory)とは、スカラー場を古典的、あるいは量子的に記述する理論である。ローレンツ変換のもとで不変な場をスカラー場と呼ぶ。量子化されたスカラー場はスピン0のボース粒子に対応しており、これらの粒子をスカラー粒子と呼ぶ。また、この場はクライン-ゴルドン方程式に従うことから、クライン-ゴルドン場、クライン-ゴルドン粒子とも呼ばれる。 現在のところ、自然界で観測されうるスカラー場の唯一の例は、ヒッグス粒子である。π中間子などの中間子の中にもスピン0のボース粒子があるが、これらを場として扱う場合、厳密にはスカラー場としてではなく、パリティ変換のもとで不変でない擬スカラー場として扱う。スカラー場は数学的な扱いが比較的単純なため、場の理論でしばしば最初に導入される例となる。 この記事では、同じ添え字の連続はアインシュタインの縮約を表す。古典論は(D-1)次元の空間と1次元の時間を持つD次元の平らなミンコフスキー空間において定義する。ミンコフスキー空間の計量テンソルはdiag(+1, -1, -1, -1)を採用する。.

新しい!!: ディラック定数とスカラー場の理論 · 続きを見る »

光子

|mean_lifetime.

新しい!!: ディラック定数と光子 · 続きを見る »

磁気モーメント

磁気モーメント(じきモーメント、)あるいは磁気能率とは、磁石の強さ(磁力の大きさ)とその向きを表すベクトル量である。外部にある磁場からもたらされる磁石にかかるねじる方向に働く力のベクトル量を指す。ループ状の電流や磁石、電子、分子、惑星などもそれぞれ磁気モーメントを持っている。 磁気モーメントは強さと方向を持ったベクトルと考えることができる。磁気モーメントの方向は磁石のS極からN極へ向いている。磁石がつくる磁場は磁気モーメントに比例する。正確には「磁気モーメント」とは一般的な磁場をしたときの1次項が生成する磁気双極子モーメントの系を言う。物体の磁場の双極子成分は磁気双極子モーメントの方向について対称であり、物体からの距離の −3 乗に比例して減少していく。 磁気モーメントは周囲に磁束を作る。 対になる磁極の強さを ±m とし、負極から正極を指すベクトルを d とする。磁気モーメント m はモーメントの名のとおり、m と d の積である。 磁力は電荷が移動することで発生する。回転する電荷は中心に位置する磁気モーメントと等価であり、その磁気モーメントは電荷のもつ角運動量と比例関係にある。.

新しい!!: ディラック定数と磁気モーメント · 続きを見る »

群速度

重力波における、周波数分散を持つ波束(波群)を表したもの。赤点は'''位相速度'''で動き、緑点は'''群速度'''で動いている。このように水深が深い場合には、水面では位相速度は群速度の二倍になる。図の左から右に動く間、赤点は緑点を二回追い越す。波束の後方(の緑点)で新しい波が出現し、波束の中心に向かって振幅が大きくなり、波束の前方(の緑点)で消えているように見える。水面の重力波においては、ほとんどの場合、水粒子の速度は位相速度よりもずっと小さい。 位相速度と群速度が逆の例。 群速度(ぐんそくど、)とは、複数の波を重ね合わせた時にその全体(波束)が移動する速度のことである。 波(波動)の周波数(角振動数)を 、その波数ベクトルを とすると分散関係 から、群速度 は次のように定義される。 群速度はしばしばエネルギーや情報が伝わる速度と考えられている。多くの場合、これは正しく波形が伝わる信号速度と考えることができる。しかし、波が吸収性のある媒質を伝播する場合には、上のことが常に成り立つとは限らない。 1980年までに多くの実験により、レーザー光のパルスの速度が真空中の光速度を超える速度で特別な物質中を伝播することが確かめられた。だからといって、超光速度の情報伝達はこの場合には不可能である。それは信号の速度は光の速度よりも遅いためである。また、群速度を小さくして0として静止させたり、負の速度としパルスを逆向きに伝播するようにすることができる。しかしながら、これらの場合には光子は媒質中での光速度で伝播を続けている。 位相速度と区別する群速度の概念は1839年にハミルトンにより初めて提案された。1877年にレイリーが において最初に扱った。.

新しい!!: ディラック定数と群速度 · 続きを見る »

結合定数 (物理学)

物理学における結合定数(けつごうていすう、coupling constant)とは、粒子間の相互作用の強さを決定する物理量である。物理的な系を記述するラグランジアンやハミルトニアンは運動項と相互作用項に分離でき、結合定数は運動項に対する相互作用項の大きさや、相互作用項同士の大きさの比を示す係数として現れる。.

新しい!!: ディラック定数と結合定数 (物理学) · 続きを見る »

結晶運動量

固体物理学における結晶運動量(けっしょううんどうりょう、crystal momentum)または擬運動量(ぎうんどうりょう、quasimomentum、準運動量とも)とは、結晶格子中の電子に関する運動量に似たベクトル量。格子中で電子が持つ波数ベクトル によって以下のように定義される。 ここで は換算プランク定数である。力学的な運動量のように、結晶運動量においても運動量保存則がしばしば適用される。このため物質科学や物理学において解析の手段として有用である。.

新しい!!: ディラック定数と結晶運動量 · 続きを見る »

物理学に関する記事の一覧

物理学用語の一覧。物理学者名は含まない。;他の物理学関係の一覧.

新しい!!: ディラック定数と物理学に関する記事の一覧 · 続きを見る »

物理定数

物理定数(ぶつりていすう、ぶつりじょうすう、physical constant)とは、値が変化しない物理量のことである。プランク定数や万有引力定数、アボガドロ定数などは非常に有名なものである。例えば、光速はこの世で最も速いスカラー量としてのスピードで、ボーア半径は水素の電子の(第一)軌道半径である。また、大半の物理定数は固有の単位を持つが、光子と電子の相互作用を具体化する微細構造定数の様に単位を持たない無次元量も存在する。 以下に示す数値で特記のないものは科学技術データ委員会が推奨する値でありNIST、論文として複数の学術雑誌に投稿された後、2015年6月25日に""として発表されたものであるConstants bibliography。 以下の表の「値」の列における括弧内の数値は標準不確かさを示す。例えば は、 という意味である(不確かさを参照)。.

新しい!!: ディラック定数と物理定数 · 続きを見る »

運動量演算子

量子力学における運動量とは、波動関数 を別の関数に対応させる演算子である。 もし新しい関数が元々の波動関数 の定数 倍であったとき、 は運動量演算子の固有値で、 は運動量演算子の固有関数である。 量子力学では、演算子の固有値はその演算子の観測値になりうる値である。 運動量演算子は微分演算子の1つである。1次元の粒子の場合、次のように定義される。 ここで はディラック定数、 は虚数単位、また波動関数は時間についての関数でもあるため全微分 の代わりに偏微分 \partial が用いられる。 ハット記号は演算子を表す。 運動量演算子は波動関数に対して次のように作用する。 運動量演算子は関数に掛け算をすると思われることもあるが、これは実際には正しくなく、関数の偏微分をとっている。 運動量演算子は量子力学が発展した1920年代に、ニールス・ボーア、アルノルト・ゾンマーフェルト、エルヴィン・シュレーディンガー、ユージン・ウィグナーなど多くの理論物理学者によって見いだされた。.

新しい!!: ディラック定数と運動量演算子 · 続きを見る »

調和振動子

調和振動子(ちょうわしんどうし、harmonic oscillator)とは、質点が定点からの距離に比例する引力を受けて運動する系である。調和振動子は定点を中心として振動する系であり、その運動は解析的に解くことができる。.

新しい!!: ディラック定数と調和振動子 · 続きを見る »

重力相互作用

重力相互作用(じゅうりょくそうごさよう、gravitational interaction)とは、自然界に存在する4つの基本相互作用のうち、重力による相互作用を指し、力の強さは距離の2乗に反比例する。.

新しい!!: ディラック定数と重力相互作用 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: ディラック定数と重合体 · 続きを見る »

量の次元

量の次元(りょうのじげん、)とは、ある量体系に含まれる量とその量体系の基本量との関係を、基本量と対応する因数の冪乗の積として示す表現である。 ISOやJISなどの規格では量 の次元を で表記することが規定されているが、しばしば角括弧で括って で表記されるISOやJISなどにおいては、角括弧を用いた は単位を表す記号として用いられている。なお、次元は単位と混同が多い概念であるが、単位の選び方に依らない概念である。。 次元は量の間の関係を表す方法であり、量方程式の乗法を保つ。ある量 が二つの量 によって量方程式 で表されているとき、それぞれの量の次元の間の関係は量方程式の形を反映して となる。基本量 と対応する因子を で表したとき、量 の次元は の形で一意に表される。このとき冪指数 は次元指数と呼ばれる。全ての次元指数がゼロとなる量の次元は指数法則により1である。次元1の量は無次元量()とも呼ばれる。.

新しい!!: ディラック定数と量の次元 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: ディラック定数と量子力学 · 続きを見る »

量子ゼノン効果

量子力学において、量子ゼノン効果(りょうしゼノンこうか、quantum Zeno effect)とは、短時間内での観測の繰り返しにより、時間発展による量子状態の他状態への遷移が抑制される現象。観測の頻度を高めていくと、究極的には時間発展が停まり、初期状態に留まり続けることを示唆するため、量子ゼノンパラドックスとも呼ばれる。量子ゼノンという名は「飛んでいる矢は観測している各瞬間で止まっている 」というゼノンのパラドックスに因む。また、ときに英語の諺「見つめる鍋は煮え立たない」() の量子力学版に例えられる。量子ゼノン効果は1977年にテキサス大学オースティン校の物理学者B.

新しい!!: ディラック定数と量子ゼノン効果 · 続きを見る »

量子渦

量子渦(りょうしうず、quantum vortex)とは、超流動や超伝導において現れる位相欠陥である。 量子渦の存在は、1940年代後半、超流動ヘリウムに関してラルス・オンサーガーによって初めて予言された。オンサーガーは量子渦の存在が超流動の循環を記述することを指摘し、超流動相転移が渦の励起を引き起こすことを予想した。オンサーガーによるこれらの考えは、1955年にリチャード・P・ファインマンによってさらに拡張され、1957年にはアレクセイ・アブリコソフによって、第二種超伝導体の相転移を説明するため用いられた。 1950年代後半には、が超流動ヘリウム4中に振動するワイヤを張ることで、量子渦を実験的に観測することに成功し、後に、第二種超伝導体や冷却原子気体のボース=アインシュタイン凝縮においても観測されている。 超流動における量子渦は、循環の量子化に対応し、超伝導における量子渦は、磁束の量子化に対応する。.

新しい!!: ディラック定数と量子渦 · 続きを見る »

自由電子

自由電子(じゆうでんし, free electron)とはポテンシャルがいたるところでゼロ、つまり何ら束縛を受けていない電子のこと。電子気体(フェルミ気体)とも呼ばれることがある。この自由電子をモデルとしたものを自由電子モデル(自由電子模型、Free electron model)と言う。現実の電子系について、それらが自由電子であると仮定する近似を自由電子近似と言う。 特に金属の場合は、伝導電子と同じ意味で自由電子という言葉が用いられる。金属内部の自由電子は、電気伝導や熱伝導を担う。 実際には通常の金属においても、伝導電子はごく弱くはあるが相互作用を受けている。強く束縛を受ける伝導電子などには適用できず、電子同士の多体相互作用も無視している。自由電子として扱うのは一種の理想化である。.

新しい!!: ディラック定数と自由電子 · 続きを見る »

自然放出

自然放出(しぜんほうしゅつ、英語:spontaneous emission)とは、光源となる物質 (原子、分子、原子核など) が励起状態からよりエネルギーの低い量子状態 (たとえば基底状態) へ移り、その際に光子を放出する過程のことである。 自然放出と誘導放出の異なる点は、自然放出の場合には自発的に励起状態から別のエネルギー状態への遷移が起こることであり、自然放出による光の強さは、外部から入力される光の強さに比例しない。 半古典論による取り扱いでは自然放出は記述できず、誘導放出しか理論に現れない。量子化された光を用いることで自然放出が記述できるようになる。量子化された電磁波 (つまり調和振動子の集まり) の零点振動に誘起されるものが自然放出である。 自然放出は多くの自然現象で重要な役割を果たし、応用面においても、蛍光灯や、テレビなどのモニターに用いられるブラウン管、プラズマディスプレイ、発光ダイオード (LED) などに利用されている。.

新しい!!: ディラック定数と自然放出 · 続きを見る »

虚時間

虚時間(きょじかん、)は、虚の時間、つまり、単位時間の虚数(純虚数)倍で表される時間である。.

新しい!!: ディラック定数と虚時間 · 続きを見る »

SI併用単位

SI併用単位(エスアイへいようたんい)とは、国際単位系 (SI) には属さないが、SIとの併用が国際度量衡委員会 (CIPM) により認められている単位である。 SI基本単位やそれを組み立てたSI組立単位は、計算の際に単位の換算をしなくて済むという利点があり、全ての人がSI単位を使用することで、その利点がより発揮されることになる。しかし、実際にはいくつかの非SI単位が科学、技術、通商の分野でも使用されており、それらは今後も使われ続けることが予想される。そのため、SIの国際文書ではそれらの非SI単位についても触れ、そのうちのいくつかを「SI単位と併用される非SI単位」「SIとの併用が認められている単位」としている。SIでは、これらの単位のSIとの併用は認めているものの、使用を推奨しているわけではない。.

新しい!!: ディラック定数とSI併用単位 · 続きを見る »

Unicodeの互換文字

Unicodeの互換文字(ごかんもじ、Compatibility Character)とは、ユニコードコンソーシアムが使わないことを推奨している、図形文字の一群である。UnicodeとUCSについて議論するときに言及されることが多い。 Unicodeコンソーシアムの用語集によると、既存の文字コードとの互換性と往復変換のためだけに収録された文字のことである。 しかし、定義はその用語集に表れているものよりも複雑である。ユニコードコンソーシアムが文字に与えている特性, Unicode, Inc.

新しい!!: ディラック定数とUnicodeの互換文字 · 続きを見る »

White & Nerdy

White & Nerdy(ホワイト・アンド・ナーディ)は、アメリカのパロディ音楽家ウィアード・アル・ヤンコビックが発表した楽曲。ラッパーのカミリオネアの曲「Ridin'」の替え歌である。収録アルバムは『Straight Outta Lynwood』で、冒頭の第1曲に配置された。2006年の9月28日にリリースされ、Billboard Hot 100のトップ10に入った。このアルバムの日本版は発売されていない。.

新しい!!: ディラック定数とWhite & Nerdy · 続きを見る »

核磁気共鳴

核磁気共鳴(かくじききょうめい、nuclear magnetic resonance、NMR) は外部静磁場に置かれた原子核が固有の周波数の電磁波と相互作用する現象である。.

新しい!!: ディラック定数と核磁気共鳴 · 続きを見る »

水素原子におけるシュレーディンガー方程式の解

本項、水素原子におけるシュレーディンガー方程式の解(すいそげんしにおけるシュレーディンガーほうていしきのかい)では、ハミルトニアンが と書ける二粒子系の時間非依存なシュレーディンガー方程式の厳密解を解く(式中の記号の意味は後述)。 物理学的にはこれは、.

新しい!!: ディラック定数と水素原子におけるシュレーディンガー方程式の解 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: ディラック定数と波数 · 続きを見る »

振動子強度

振動子強度(しんどうしきょうど、)とは原子や分子が光を吸収し、ある量子状態から別の量子状態へ電気双極子遷移するの強さを表す無次元量である。状態|1 m_1\rangleから状態|2 m_2\rangleへの遷移における振動子強度f_は以下のように定義される。 ここでm_eは電子の質量、\hbarは換算プランク定数である。 量子状態|n m_n\rangle, n.

新しい!!: ディラック定数と振動子強度 · 続きを見る »

文字様記号

文字様記号(もじようきごう、Letterlike Symbols)は、Unicodeのブロックの一つであり、主として1つまたは複数の字母の字体から構成された80のキャラクタが収録されている。 このブロックの他に、Unicodeにはが含まれているが、Unicodeではこれらの文字を明示的に「文字様(letterlike)」には分類していない。 文字様記号のうち、、、については、正準等価である普通の文字を使用することが推奨されている。また、とについては、(度)と通常の文字(C, F)を組み合わせて使用し、検索の際はこれと一文字の文字様記号と同一視することを推奨している。.

新しい!!: ディラック定数と文字様記号 · 続きを見る »

時間微分

時間微分(じかんびぶん、time derivative, derivative with respect to time)とは、引数に時間を持つ関数もしくは汎関数の時間に関する導関数、または時間に関する微分そのものを指す。ある関数の時間微分は、元の関数の時間的な変化の割合を表すので、速度の名を冠することが多い。例えば物体の運動速度や、化学反応における反応速度などは、それぞれ位置の時間微分と物質量の時間微分を指す。 時間微分は、その対象の時間的な変化の度合いを調べる目的のほかに、元の関数の性質を調べる上で、その導関数の扱いが容易である場合に用いられる。あるいは、一般の微分方程式と同様に、未知の関数に対する時間発展を時間に関する微分方程式によって与える際に現れる。 数学や物理学などにおいては、ある種の変換に対する対称性や不変性がしばしば興味の対象となる。特に時間変化に対する不変性は重要な意味を持ち、時間微分が恒等的に 0 であるような量は保存量と呼ばれる。このとき元の量は時間的変化に対して不変である。ネーターの定理に示唆されるように、保存量やそれを与える保存則は、系が備える基本的な性質の反映であると考えられるので、自然科学の分野において基礎となるモデルを考える上で重要である。.

新しい!!: ディラック定数と時間微分 · 続きを見る »

1+2+3+4+…

自然数すべての総和 は、その -次の部分和 が三角数によって与えられる無限級数。これは を無限大に飛ばすとき際限なく増加するため、この級数は(正の無限大に)発散し、通常の意味での「和」を持たない。 一見するとこの級数が意味のある値を持つことは全くないように思われるが、これに数学的に意味のある値を結びつける方法があり、そうして得られた値は複素解析や、物理学における場の量子論、特に弦理論などの分野において応用がある。様々な総和法を用いることで、上記のごとき発散級数にさえ有限な数値を割り当てることができ、特にゼータ関数正規化やラマヌジャン総和法では件の級数に を値として割り当てる。この事実をよく知られた公式 として式に表す。モンスター群のムーンシャイン現象に関するモノグラフではこの等式を「自然科学において最も注目すべき公式の一つ」と評した。.

新しい!!: ディラック定数と1+2+3+4+… · 続きを見る »

ここにリダイレクトされます:

換算プランク定数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »