ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

クーロン

索引 クーロン

ーロン(、記号C)は、電荷のSI単位である。クーロンという名称は、フランスの物理学者、シャルル・ド・クーロンの名にちなむ。.

81 関係: 力の比較単位の換算一覧古典電磁気学変位電流一フッ化塩素一貫性 (単位系)人名に由来する物理単位強誘電体メモリメートル法リサイクル識別表示マークレントゲン (単位)ロバート・ミリカンボルト (単位)ボルト毎メートルヘンリープランク単位系プランク電荷テスラ (単位)デバイファラデー (単位)ファラデーカップファラドフィロ・ファーンズワース フューザードリフトチェンバーホプキンソンの法則アメリカ合衆国のメートル法化アンペアアンペア時アブアンペアエネルギーの比較オームクーロン (曖昧さ回避)クーロンブロッケードクーロンフィーユクーロン毎キログラムシャルル・ド・クーロンジュールジーメンススタットボルトスタットクーロン国際度量衡総会CC (曖昧さ回避)CGS単位系磁気回転比物理学に関する記事の一覧発電E遷移双極子モーメント静電容量...静電気学計量単位一覧計量法に基づく計量単位一覧質量電荷比膜電位配位子場理論酸化還元電位電位電圧の比較電磁気量の単位系電荷電束電束密度電気電気二重層電気素量電池電流電流の比較IEC 80000-6KCMKSA単位系MKS単位系RLC回路SI組立単位毎ファラド木原太郎 (物理学者)流束新しいSIの定義6月14日8月23日 インデックスを展開 (31 もっと) »

力の比較

本項では、力の比較(ちからのひかく)ができるよう、昇順に表にする。力はベクトル量であるが、ここではその大きさを扱う。 重力下における「重さ」(重量)は力であるので、下記の例の中には様々な物体の重さが含まれている。注記のない場合、海抜0メートルにおける標準重力加速度下での重力を示している。.

新しい!!: クーロンと力の比較 · 続きを見る »

単位の換算一覧

単位の換算一覧(たんいのかんさん いちらん)は、さまざまな単位を相互に換算するための一覧http://www.nmij.jp/library/units/si/。単位の換算、国際単位系、SI組立単位、CGS単位系、尺貫法、ヤード・ポンド法、度量衡、計量単位一覧、次元解析、SI接頭辞なども参照のこと。.

新しい!!: クーロンと単位の換算一覧 · 続きを見る »

古典電磁気学

古典電磁気学または古典電気力学は、電荷と電流の間の電磁気力について研究する理論物理学の一分野である。対応する長さや電磁場の強さが量子力学的効果に影響されないほど十分大きければ、電磁現象をうまく説明できる(量子電磁力学参照)。古典電磁気学の基礎物理学的側面は、『ファインマン物理学』、パノフスキーらの『電磁気学』、『ジャクソン電磁気学』などで紹介されている。 電磁気学は19世紀に発展したが、その中でも特にジェームズ・クラーク・マクスウェルが重要な役割を果たした。電磁気学の歴史については、パウリの『相対性理論』、数学者E・T・ホイッタカーの著書、A・パイスのアインシュタインの伝記などに詳しい。 Ribarič and Šušteršič (1990)では、1903年から1989年までの約240の文献を参照・研究し、古典電気力学の分野で現代においても未解決の1ダースほどの問題を提示している。ジャクソンが古典電気力学最大の問題としたのは、基本方程式について2つの極端な場合においてしか解が得られていないという点である。すなわち、電荷または電流が与えられ、そこから電磁場を計算して求める場合と、外部の電磁場が与えられ、荷電粒子や電流の動きを計算して求める場合である。時折、この2つを組み合わせることもある。しかし、その場合の取り扱いは段階的に行われる。まず、外部電磁場内の荷電粒子の動きをそれ自身の電磁放射を無視して計算し、次いでその軌道に基づいてその電荷の電磁放射を計算する。このような電気力学における問題の扱い方は近似的な妥当性しか持ち得ないことは明らかである。電荷と電流の相互作用やそれらが放射する電磁場は無視することができず、結果としてそうした電気力学系についての我々の理解は限定的なものとなっている。1世紀に渡る努力にもかかわらず、広く受け入れられた荷電粒子の古典的運動方程式は未だに存在しないし、関連する実験データも存在しない。.

新しい!!: クーロンと古典電磁気学 · 続きを見る »

変位電流

変位電流(へんいでんりゅう)とは電束電流(でんそくでんりゅう)とも言い、電束密度の閉曲面における法線成分の面積分が時間的に変位し発生する電流である。電束密度をD、閉曲面をSとすると次の式で表せる。 電流により、磁界が発生するが、変位電流は具体的に電荷の移動に伴って発生するものではないので、「変位」という名称が付けられている。単位は同じくクーロン毎秒である。 ジェームズ・クラーク・マクスウェルが、電磁気に関する第三論文「電磁場の動力学的理論」で初めて導入し、著書『電気磁気論』にも記したもの。 この変位電流の導入によって、マクスウェルの方程式は完成し、そこから電磁波や光速度が導かれることになった。.

新しい!!: クーロンと変位電流 · 続きを見る »

一フッ化塩素

一フッ化塩素(いちフッかえんそ、chlorine monofluoride)は、化学式が ClF で表される塩素原のフッ化物である。常温では無色の気体で、-100℃で淡黄色の液体となる。CAS登録番号は 。 1928年、ドイツの化学者オットー・ルフ(Otto Ruff)により初めて合成されたArnold F. Holleman, Egon Wiberg, Nils Wiberg: Lehrbuch der anorganischen Chemie, 101.

新しい!!: クーロンと一フッ化塩素 · 続きを見る »

一貫性 (単位系)

一貫性(いっかんせい)のある組立単位とは、その単位系における基本単位の冪乗の、1以外の比例定数を含まない積である組立単位のことである。基本単位以外の全ての単位が一貫性のある組立単位である単位系を「一貫性のある単位系」と言う。「一貫性のある」は「コヒーレント(coherent)な」とも言い、一貫性のことを「コヒーレンス(coherence)」とも言う。 一貫性の概念は、19世紀中頃にケルヴィン卿ウィリアム・トムソンやジェームズ・クラーク・マクスウェルらによって発展し、によって奨励された。この概念はまず、1873年と1875年に、CGS単位系(メートル法)とFPS単位系(ヤード・ポンド法)に導入された。1960年の国際単位系(SI)は、一貫性のある単位系として設計された。.

新しい!!: クーロンと一貫性 (単位系) · 続きを見る »

人名に由来する物理単位

人名に由来する物理単位(じんめいにゆらいするぶつりたんい)は、人名に由来する物理単位の一覧である。.

新しい!!: クーロンと人名に由来する物理単位 · 続きを見る »

強誘電体メモリ

FeRAM 強誘電体メモリ(きょうゆうでんたいめもり・Ferroelectric Random Access Memory)とは、FeRAMとも呼ばれる、強誘電体のヒステリシス(履歴効果)に因る正負の残留分極(自発分極)をデータの1と0に対応させた不揮発性メモリのことである。なお、FRAMは同種のRAMのラムトロン・インターナショナル(【現】サイプレス・セミコンダクター)による商標で、国内では富士通が同社とのライセンスによりFRAMの名称を使用している。 強誘電体膜の分極反転時間は1ns以下であり、FeRAMはDRAM並みの高速動作が期待される。.

新しい!!: クーロンと強誘電体メモリ · 続きを見る »

メートル法

メートル法を公式採用している国 メートル法(メートルほう、metric system)とは、長さの単位であるメートル(mètre)と質量の単位であるキログラム(kilogramme)を基準とする、十進法による単位系のことである。.

新しい!!: クーロンとメートル法 · 続きを見る »

リサイクル識別表示マーク

リサイクル識別表示マーク(リサイクルしきべつひょうじマーク)とは、資源の有効な利用の促進に関する法律に基づき表示が義務付けられている、製品が廃棄されたときに分別収集して資源として再利用する際の目印となるマークである。.

新しい!!: クーロンとリサイクル識別表示マーク · 続きを見る »

レントゲン (単位)

レントゲン(röntgen または roentgen)は、かつて使われていた照射線量(照射した放射線の総量)の単位である。記号はR。X線の発見者であるヴィルヘルム・レントゲンにちなんで命名されたもので、1928年に導入された。単位記号は当初小文字のrが当てられていたが、人名由来の記号は大文字から始めるという原則に基づき1962年にRに変更された。 空気中に放射線(X線やγ線)を照射すると原子がイオン化(電離)される。1レントゲンは、放射線の照射によって標準状態(STP)の空気1立方センチメートル(cm3)あたりに1静電単位(esu)のイオン電荷が発生したときの、放射線の総量と定義される。1静電単位のイオン電荷は、2.08個の正負のイオン対に相当する。 レントゲンはCGS単位系(CGS静電単位系)の単位であり、国際単位系(SI)には採用されていない。そのため日本では1989年(平成元年)4月の国際単位系への切り替え以降使わない方向で進んでいる。ただし、JIS Z8203:2000によると「当分の間、使用することがCIPMで認められている」と記載されている。.

新しい!!: クーロンとレントゲン (単位) · 続きを見る »

ロバート・ミリカン

バート・アンドリューズ・ミリカン(Robert Andrews Millikan, 1868年3月22日 - 1953年12月19日)はアメリカ合衆国の物理学者である。1923年、電気素量の計測と光電効果の研究によりノーベル物理学賞を受賞した。アメリカ合衆国において大衆的な人気を得た物理学者、当時のアメリカの物理学界での権威となった実験物理学者である。 カリフォルニア工科大学の創立に加わり、同校が合衆国において有数の名門校となる基礎を築いた。.

新しい!!: クーロンとロバート・ミリカン · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

新しい!!: クーロンとボルト (単位) · 続きを見る »

ボルト毎メートル

ボルト毎メートル(ボルトまいメートル、記号: V/m)は、電界の強さ(電界強度・電場強度または単に電界・電場ともいう)の単位である。 電界とは、空間中に電荷が存在することによって引き起こされる電位の勾配のことであり、電界の強さは単位長さ当たりの電位によって示される。ボルト毎メートルは、電位の単位ボルト(V)を長さの単位メートル(m)で除したものである。 日本の計量単位令では、上記のような定義ではなく、「毎メートル真空中において1クーロン(C)の電気量を有する無限に小さい静止している帯電体に働く力が1ニュートン(N)である電界の強さ」(N/C)と定義されている。J.

新しい!!: クーロンとボルト毎メートル · 続きを見る »

ヘンリー

ヘンリー(henry、記号:H)はインダクタンスの単位である。国際単位系 (SI) では組立単位となっている。名称は、アメリカ合衆国の物理学者ジョセフ・ヘンリーから付けられた。ヘンリーは、イギリスのマイケル・ファラデーとほぼ同時期に、それとは独立に電磁誘導を発見した。.

新しい!!: クーロンとヘンリー · 続きを見る »

プランク単位系

プランク単位系(プランクたんいけい)は、マックス・プランクによって提唱された自然単位系である。 プランク単位系では以下の物理定数の値を 1 として定義している。 プランク単位系は物理学者によって「神の単位」と半ばユーモラスに言及される。自然単位系は「人間中心的な自由裁量が除かれた単位系」であり、ごく一部の物理学者は「地球外の知的生命体も同じ単位系を使用しているに違いない」と信じている。 プランク単位系は、物理学者が問題を再構成するのに役立つ。.

新しい!!: クーロンとプランク単位系 · 続きを見る »

プランク電荷

プランク電荷(プランクでんか)は、プランク単位系における電荷の単位である。プランク電荷は、約1.875 5459 × 10−18 クーロンである。 プランク電荷 q_ は、c を真空中の光速度 、\hbar をディラック定数、\epsilon_ を真空の誘電率とするとき、次式で表される。 また、プランク電荷 q_ は、e を電気素量、\alpha を微細構造定数とするとき、次式で表される。.

新しい!!: クーロンとプランク電荷 · 続きを見る »

テスラ (単位)

テスラ(tesla、記号: T)は、磁束密度の単位である。 その名称はニコラ・テスラにちなむ。1960年の国際単位系 (SI) 導入の際、それまでのCGS単位系に基づくガウスをSIに基づくものに置き換えるために定められた。.

新しい!!: クーロンとテスラ (単位) · 続きを見る »

デバイ

デバイ (debye) は、電気双極子モーメントを表す単位のひとつ。D で表す。単位名は物理学者のピーター・デバイにちなむ。 SI単位系・CGS単位系としては認められていないが、物理学・化学などの分野では頻繁に使用されている。 esu·cm を 1 D と定義する。SIでは、厳密に (1/299792458) C·m(クーロンメートル)であり、約 3.33564 C·m に等しい。 一般的な原子や分子の電気双極子モーメントは、「電気双極子モーメントの原子単位」である、ボーア半径と電気素量の積 ≒ 2.54 D のオーダーとなる。SI単位でこの値を表すと 2.54 D ≒ 8.47 C·m と極めて小さな値となって使いづらいため、一般的にデバイが使用される。.

新しい!!: クーロンとデバイ · 続きを見る »

ファラデー (単位)

ファラデー(faraday, 記号 Fd)は、電荷の古い単位である。現在は使われておらず、国際単位系 (SI) のクーロン (C) に完全に置き換えられている。 単位名は、静電容量のSI単位ファラド(farad, 記号 F)と同じくイギリスの物理学者マイケル・ファラデーに因む。.

新しい!!: クーロンとファラデー (単位) · 続きを見る »

ファラデーカップ

ファラデーカップ (Faraday cup) は金属製(導電性)のカップで、帯電した粒子を真空中で捕捉する装置である。荷電粒子や電子を検出する時に使用される。 ファラデーカップは1830年、イオンについて理論づけたマイケル・ファラデーに因んで名づけられた。.

新しい!!: クーロンとファラデーカップ · 続きを見る »

ファラド

ファラド(farad、記号:F)は、コンデンサ(キャパシタ、蓄電器)などの静電容量の単位(SI組立単位)である。名称はマイケル・ファラデーに由来するもので、ファラッドともいわれる。なお、同じくマイケル・ファラデーに由来するファラデーという単位があるが、これは電荷の単位である。.

新しい!!: クーロンとファラド · 続きを見る »

フィロ・ファーンズワース フューザー

フィロ・ファーンズワース フューザー若しくは単純にフューザーとは、フィロ・ファーンズワースによって発明された核融合装置である。数多くの研究者により開発されてきた従来の核融合装置との大きな違いは、磁場によってプラズマを封じ込めて緩やかに加熱するのではなく、反応容器内で瞬間的に高温状態を作り出す慣性静電場閉じ込め式という点である。 開発当初は核融合エネルギーの実用化かと期待されたが、開発が進むにつれ困難であることが判明したので中性子発生装置としての用途に活路を見出された。今日では、その特性を活かして、非破壊検査や地中の地雷や爆発物等、見えない危険物質のスペクトルをエネルギー分散型X線分光計で検出する用途や医療用の同位体の製造を目的として開発が進められつつある。.

新しい!!: クーロンとフィロ・ファーンズワース フューザー · 続きを見る »

ドリフトチェンバー

ドリフトチェンバー(英: Drift Chamber)とは、主に素粒子・原子核物理実験で用いられる位置検出器である。.

新しい!!: クーロンとドリフトチェンバー · 続きを見る »

ホプキンソンの法則

ホプキンソンの法則(英 Hopkinson's law)は、における起磁力の大きさは磁束の大きさに比例するという法則。電気回路のオームの法則に対応する。イギリスの電気工学者であるジョン・ホプキンソン(; 1849-1898)にちなんでこう呼ばれている。 電気回路においては、オームの法則が成り立つため、起電力(電位差) \mathcal E と電流 I は比例する。比例係数である電気抵抗 R との間には次の関係が成り立つ。 これと同じように、磁気回路においても、起磁力(磁位差) \mathcal F_m と磁束 \Phi は比例すると類推することができ、比例係数を \mathcal R_m とすると、次の関係が成り立つ。 これを、ホプキンソンの法則といい、比例係数 \mathcal R_m(単位はアンペア毎ウェーバ )を磁気抵抗(またはリラクタンス)と呼ぶ。 オームの法則とホプキンソンの法則は電気・磁気のアナロジーの関係になっており、電気回路と磁気回路の間には他にもいくつかの類比(アナロジー:Analogy)が成り立つということができる。 Category:自然科学の法則 Category:電磁気学 Category:磁気.

新しい!!: クーロンとホプキンソンの法則 · 続きを見る »

アメリカ合衆国のメートル法化

本項目では、アメリカ合衆国のメートル法化について記述する。メートル法化とは、国際単位系(SI)に代表されるメートル法を導入して、従来の単位を置き換えるプロセスである。アメリカ合衆国の全ての慣用単位はSIにより再定義されているが、2017年の時点で、アメリカ合衆国は、メートル法を主要な度量衡として公式に採用していない3か国(他はミャンマーとリベリア)の内の1つとなっている 。 アメリカ合衆国において、日常的な目的には慣用単位が広く使用されているが、科学・医学・国際関係などの分野ではSIが使用されている。1994年以降の連邦法では、ほとんどの梱包された消費財には慣用単位とメートル法単位の両方を表示することが義務付けられている。しかし、多くのアメリカ人は、日常生活の中でメートル法単位のサイズに慣れていないままである。.

新しい!!: クーロンとアメリカ合衆国のメートル法化 · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

新しい!!: クーロンとアンペア · 続きを見る »

アンペア時

アンペア時(アンペアアワー、ampere-hour, Ah, A·h)は、電荷の単位である。安定した1アンペア(A)の電流を1時間流すことで移動する電荷の量と定義され、3600クーロン(C)に等しい "Full Conversion Table (sorted by Category)" Allmeasures.com, 2004, webpage:.

新しい!!: クーロンとアンペア時 · 続きを見る »

アブアンペア

アブアンペア(abampere, 記号: abA)は、電流の単位。CGS電磁単位系(CGS-emu)における基本単位の一つであるが、当初は固有の名称が与えられておらず、他の多くの物理量と同様にを付して表されていた。 1の電流とは、「真空中に1センチメートルの間隔で同じ大きさの電流が流れているとき、両者の間に働く力が1センチメートルにつき2ダインであるときの電流」と定義される。 このように定められた「絶対単位」に対し、「実用単位」として、絶対単位の 1/10 の大きさが1アンペアと定義された。「アブアンペア」という名称は、アンペアに対応する絶対単位(absolute unit)という意味で、後になって与えられたものである。さらにCGS電磁単位系を4元化した一般化CGS電磁単位系では、ジャン=バティスト・ビオにちなんだビオ(biot, 記号: Bi)という固有の名称が与えられている。 国際単位系(SI)では、このとき定められた実用単位アンペアの大きさが変わらないように定義し直されているため、「」といった、一見不自然な値が用いられることになる。 アブアンペアとCGS単位系の基本単位・組立単位から、以下の単位を組み立てることができる。 Category:電流の単位 Category:CGS単位系 Category:エポニム.

新しい!!: クーロンとアブアンペア · 続きを見る »

エネルギーの比較

本項では、エネルギーの比較(エネルギーのひかく)ができるよう、昇順に表にする。.

新しい!!: クーロンとエネルギーの比較 · 続きを見る »

オーム

ーム()は、インピーダンスや電気抵抗(レジスタンス)、リアクタンスの単位である。国際単位系 における組立単位のひとつである。 名称は、電気抵抗に関するオームの法則を発見したドイツの物理学者、ゲオルク・ジーモン・オームにちなむ。記号はギリシャ文字のオメガ ('''Ω''') を用いる。これは、オームの頭文字であるアルファベットのO(オー)では、数字の0(ゼロ)と混同されやすいからである(なお、オームの名前をギリシャ文字で表記するとΓκέοργκ Ωμとなる)。 電気抵抗を表すための単位は、初期の電信業務に関連して経験的にいくつか作られてきた。1861年にが、質量・長さ・時間の単位から組み立てた実用上便利な大きさの単位としてオームを提唱した。オームの定義はその後何度か修正された。.

新しい!!: クーロンとオーム · 続きを見る »

クーロン (曖昧さ回避)

ーロン.

新しい!!: クーロンとクーロン (曖昧さ回避) · 続きを見る »

クーロンブロッケード

ーロンブロッケード(くうろんふろつけえと、Coulomb blockade, CB)とは、接合容量が低いトンネル接合を一つ以上含むような電子素子において、バイアス電圧が小さい時に電気抵抗が増大する現象である。 その名はシャルル・ド・クーロン (Charles-Augustin de Coulomb) にちなむ。.

新しい!!: クーロンとクーロンブロッケード · 続きを見る »

クーロンフィーユ

『クーロンフィーユ』は、よしづきくみちによる日本の漫画作品。『別冊少年マガジン』(講談社)にて、2013年2月号から2014年3月号まで連載された。『マガジンSPECIAL』(同社刊)2013年5号と2014年1号にもそれぞれ出張4コマが掲載されている。話数カウントは「○ COULOMB」。 単行本第3巻をもって「第1部完結」とされ、第2部以降は『クーロンフィーユ~suite~』として同人誌にて随時発表される予定2017年12月現在、未発表。。.

新しい!!: クーロンとクーロンフィーユ · 続きを見る »

クーロン毎キログラム

ーロン毎キログラム(クーロンまいキログラム、記号:C/kg)は、照射線量の単位である。1キログラムの乾燥空気に作用したときに1クーロンの二次電子を発生する照射線量と定義される。 CGS静電単位系での照射線量の単位はesu/3に等しいレントゲン (R) であり、この2つは標準状態の乾燥空気の密度を用いて と換算される(近似記号は、真空中の光速度を3.00m/sと近似したことによる)。.

新しい!!: クーロンとクーロン毎キログラム · 続きを見る »

シャルル・ド・クーロン

ャルル=オーギュスタン・ド・クーロン(Charles-Augustin de Coulomb、 1736年6月14日 - 1806年8月23日)はフランス・アングレーム出身の物理学者・土木技術者。彼が発明したねじり秤を用いて帯電した物体間に働く力を測定し、クーロンの法則を発見した。電荷の単位「クーロン」は彼の名にちなむ。.

新しい!!: クーロンとシャルル・ド・クーロン · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

新しい!!: クーロンとジュール · 続きを見る »

ジーメンス

ーメンス(siemens, 記号: S)は、コンダクタンス・アドミタンス・サセプタンスの単位で、SI組立単位の一つである。 その名はドイツの物理学者ヴェルナー・フォン・ジーメンスにちなむ。1971年の第14回国際度量衡総会(CGPM)において、ジーメンスをSI組立単位に導入することが採択された。 コンダクタンスは電気抵抗の逆数であり、ジーメンスは電気抵抗の単位オーム (Ω) の逆数として定義される。日本の計量単位令では「1アンペアの直流の電流が流れる導体の二点間の直流の電圧が1ボルトであるときのその二点間の電気のコンダクタンス」と定義している。 ジーメンスを他の単位で表すと以下のようになる。.

新しい!!: クーロンとジーメンス · 続きを見る »

スタットボルト

スタットボルト(statvolt, 記号: statV)は、CGS静電単位系における電圧・起電力の単位である。 1スタットボルトは、1スタットクーロンの電荷が1エルグの仕事をする電位差(1エルグ毎スタットクーロン)と定義される。スタットクーロンをクーロン、エルグをジュールに置き換えると、国際単位系(SI)の電圧の単位であるボルトの定義になる。よって、スタットボルトとボルトの換算は、 となる。 Category:電磁気の単位 Category:CGS単位系.

新しい!!: クーロンとスタットボルト · 続きを見る »

スタットクーロン

スタットクーロン(statcoulomb, 記号 statC)は、CGS静電単位系 (esu)・ガウス単位系における電荷(電気量)の単位である。静電単位(せいでんたんい、esu、electrostatic unit)ともいう。 1941年、ベンジャミン・フランクリンにちなんだフランクリン(franklin、記号 Fr)という名称が提唱され、CGS静電単位系を4元化した一般化CGS静電単位系では基本単位としてこの名称を使う。 1スタットクーロンは、真空中に1センチメートルの間隔で置かれた互いに等しい電気量の間に働く力が1ダインであるときの各電気量と定義される。 スタットクーロンの値をセンチメートル単位の光速度の値c(センチメートル毎秒ではなく無次元の値)で除するとCGS電磁単位系の電荷の単位であるアブクーロン(abC)になる。アブクーロンは国際単位系(SI)の電荷の単位であるクーロン(C)の10倍に相当するので、スタットクーロンとクーロンの換算は以下のようになる。 CGS静電単位系は、クーロンの法則を元にして、クーロンの法則が係数を含まなくなるように電荷の単位を決定し、電荷の単位を元に電流などの他の電磁気の単位を構築したものである。CGS静電単位系では、クーロンの法則は次のように書き表される。 ここで、q1, q2は2つの物体が持つ電荷(単位 statC)、rは物体間の距離(単位 cm)、Fは2つの物体の間に働く静電気力(単位 dyn)である。CGS静電単位系における電荷の次元は M 1/2 L 3/2 T -1で、SIにおける電荷の次元とは異なっている。 Category:CGS単位系 Category:電荷の単位 Category:エポニム.

新しい!!: クーロンとスタットクーロン · 続きを見る »

国際度量衡総会

国際度量衡総会(こくさいどりょうこうそうかい)は、メートル条約に基づき、世界で通用する単位系(国際単位系)を維持するために、加盟国参加によって開催される総会議。この会議は他の2つの機関(国際度量衡委員会(CIPM)及び国際度量衡局(BIPM))の上位機関と位置づけられる。開催は4年(当初は6年)に1度パリで行われる。フランス語の「Conférence générale des poids et mesures」に従い、英語圏においても、CGPMを頭字語とする。 2003年の総会には51の加盟国と新たな10の准加盟国が参加した。2005年現在、准加盟国は17か国になっている。2011年10月に第24回国際度量衡総会が開催され、キログラムの再定義などが焦点となった。 第25回総会は1年前倒しで、2014年11月に開催されたが、キログラムの再定義を含むSIの再定義は、2018年開催予定の第26回総会へ延期されることとなった(新しいSIの定義を参照)。.

新しい!!: クーロンと国際度量衡総会 · 続きを見る »

C

Cは、ラテン文字(アルファベット)の3番目の文字。小文字は c 。.

新しい!!: クーロンとC · 続きを見る »

C (曖昧さ回避)

C は、アルファベットの3番目の文字。キリル文字の С とは異なる。.

新しい!!: クーロンとC (曖昧さ回避) · 続きを見る »

CGS単位系

CGS単位系(シージーエスたんいけい)は、センチメートル (centimetre)・グラム (gram)・秒 (second) を基本単位とする、一貫性のある単位系である。"CGS" は基本単位の頭文字をつなげたものである。 この単位系は1832年にカール・フリードリヒ・ガウスが提唱したのに始まる、物理学における量を距離・質量・時間の3つの独立な次元によって表そうとするものである。今日的な観点からは電磁気学を扱うには電荷の次元が欠けていたが、その導入は後のジョヴァンニ・ジョルジによる理論的な整理を待たなくてはならなかった。現在では電荷の次元が導入された、CGS静電単位系やCGS電磁単位系(後述)などとして用いられる。.

新しい!!: クーロンとCGS単位系 · 続きを見る »

磁気回転比

磁気回転比(じきかいてんひ、英語:gyromagnetic ratio)とは、物理学において、角運動量に対する磁気双極子モーメントの割合である。 磁気回転比は一般に で表記される。国際単位系での単位は、s−1·T -1、もしくはC·kg−1である。 磁気回転比は、g因子と同じ意味で使われることがある 。しかし、因子は磁気回転比とは異なり、無次元量である。.

新しい!!: クーロンと磁気回転比 · 続きを見る »

物理学に関する記事の一覧

物理学用語の一覧。物理学者名は含まない。;他の物理学関係の一覧.

新しい!!: クーロンと物理学に関する記事の一覧 · 続きを見る »

発電

電(はつでん、electricity generation)とは、電気を発生させること。.

新しい!!: クーロンと発電 · 続きを見る »

E

Eは、ラテン文字(アルファベット)の5番目の文字。小文字は e 。ギリシャ文字のΕ(エプシロン)に由来し、キリル文字のЕに相当する。.

新しい!!: クーロンとE · 続きを見る »

遷移双極子モーメント

固有状態、中段はより高いエネルギーを持つエネルギー固有状態、下段はそれら2つの状態を混合した量子化学的重ね合わせである。下段右は、重ね合わせ状態において電子が行ったり来たり移動していることを示している。この運動は振動電気双極子モーメントを引き起こし、これが2つの固有状態間の遷移双極子モーメントに比例している。 遷移双極子モーメント(せんいそうきょくしモーメント)あるいは遷移モーメント(せんいモーメント、)は、始状態 \scriptstyle と終状態 \scriptstyle の間の遷移に関わる電気双極子モーメントであり、通常は \scriptstyle と表記される。.

新しい!!: クーロンと遷移双極子モーメント · 続きを見る »

静電容量

静電容量(せいでんようりょう、)は、コンデンサなどの絶縁された導体において、どのくらい電荷が蓄えられるかを表す量である。電気容量(でんきようりょう、)、またはキャパシタンスとも呼ばれる。.

新しい!!: クーロンと静電容量 · 続きを見る »

静電気学

静電気学(せいでんきがく、または静電学、Electrostatics)は静止またはゆっくり動く電荷による現象を扱う科学の一分野である。 古典古代より、琥珀のような物質をこすると軽い粒子を引き寄せることが知られていた。英語においては、ギリシャ語で琥珀をあらわす という単語が electricity(電気)の語源となった。静電現象の原因となっているのは、電荷が互いに働かせる力である。この電荷による力はクーロンの法則によって記述される。静電的に誘起された力はやや弱いとみなされがちだが、電子と陽子間に働く静電力(水素原子を作り出している)は、同粒子間に働く重力の1040倍もの強さがある。 静電現象には数多くの事例があり、パッケージからはがしたプラスチック包装紙が手に吸い付くという身近で単純なものから、穀物サイロがひとりでに爆発するという現象まである。さらに生産中に電子部品が破損したりと害になることもあれば、一方ではコピー機の原理に用いられていたりする。静電気学には物体の表面に他の物体の表面が接することにより、電荷が蓄積されるという現象が関わっている。荷電交換は2つの表面が接触し、離れるときにはいつでも起きているものの、表面のうちの少なくともどちらか一方が高い電気抵抗をもっていなければ通常その効果には気づかない。高い抵抗をもつ表面には電荷が長時間蓄えられ、その効果が観測されるためである。蓄えられた電荷は接地へとゆっくり減少してゆくか、放電によってすぐに中性化される。例えば静電気ショックの現象は、不導体の表面と接触することにより人体に蓄えられた電荷が、金属などに触れたときに一気に放電し、中性化する現象である。.

新しい!!: クーロンと静電気学 · 続きを見る »

計量単位一覧

計量単位一覧(けいりょうたんいいちらん)では、計量単位(物理学で使われる物理量や化学の単位)を一覧する。直接物理や化学の量とは対応しないが現象や性質の程度を表す量は「尺度・指標」の項に分類するとされる。 物理学・化学以外の分野の単位については単位一覧を参照.

新しい!!: クーロンと計量単位一覧 · 続きを見る »

計量法に基づく計量単位一覧

計量法に基づく計量単位一覧.

新しい!!: クーロンと計量法に基づく計量単位一覧 · 続きを見る »

質量電荷比

質量電荷比(しつりょうでんかひ、mass-to-charge ratio)は、荷電粒子の質量と電荷の比である。 例えば、電子光学やイオン光学などの荷電粒子の電気力学において、広く用いられる物理量である。たとえば、リソグラフィ、電子顕微鏡、陰極線管、加速器、核物理学、オージェ電子分光、宇宙論、質量分析のような多くの科学分野で登場する。これらの分野では、同じ真空の電磁場にある同じ質量電荷比をもった二つの粒子は同じ経路を運動するという古典電気力学の法則が重要な意味をもつ。.

新しい!!: クーロンと質量電荷比 · 続きを見る »

膜電位

中脳黒質緻密部から得た神経細胞にて、電流固定法(カレントクランプ法)によって観察された、膜電位の変動。脱分極刺激を与えられた神経細胞が8本の活動電位を発生していることが観察される。膜電位(まくでんい、membrane potential)は細胞の内外に存在する電位の差のこと。すべての細胞は細胞膜をはさんで細胞の中と外とでイオンの組成が異なっており、この電荷を持つイオンの分布の差が、電位の差をもたらす。通常、細胞内は細胞外に対して負(陰性)の電位にある。 神経細胞や筋細胞は、膜電位を素早く、動的に変化させる事により、生体の活動に大きく貢献している。そのため、膜電位とはこれらの細胞の専売特許であるかのように誤解される事も多い。しかし現実には、全ての細胞において膜内外のイオン組成は異なっており、膜電位は存在する。たとえばゾウリムシの繊毛の打つ方向の制御は膜電位の変化によって制御されている。また植物細胞において有名な例としては、オジギソウの小葉が触れる事により閉じるのも、オジギソウの細胞の膜電位の変化によるものである事が知られている。このように、膜電位(とその変化)は、単細胞生物や植物細胞にさえ存在する、生物共通の基本原理である。.

新しい!!: クーロンと膜電位 · 続きを見る »

配位子場理論

配位子場理論(はいいしばりろん、ligand field theory)とは、金属錯体のd軌道の分裂を、「金属のd軌道と配位子の軌道との間の相互作用」によって説明する理論である。.

新しい!!: クーロンと配位子場理論 · 続きを見る »

酸化還元電位

酸化還元電位(さんかかんげんでんい、Redox potentialもしくはOxidation-reduction Potential; ORP)とは、ある酸化還元反応系における電子のやり取りの際に発生する電位(正しくは電極電位)のことである。物質の電子の放出しやすさ、あるいは受け取りやすさを定量的に評価する尺度でもある。単位はボルト(V)を用い、電極電位の基準には以下の半反応式で表される酸化還元反応を用いる。 つまり水素ガス分圧が1気圧、水素イオンの活量が1のとき(これを標準水素電極と呼ぶ)の電極電位を0 Vと定義する。この半反応を基準とし、任意の酸化還元反応の電極電位が決定される。すなわち、標準水素電極(SHE; standard hydrogen electrodeもしくはNHE; normal hydrogen electrode)を陰極反応、電極電位を求めたい酸化還元反応を陽極反応にそれぞれ使い、電池を組み立てたときの電池の起電力が、求めたい電極電位となる。このとき、電極電位を求めたい酸化還元反応に関与する物質の活量(あるいは分圧)がすべて1の場合の電極電位を特に、標準酸化還元電位(ひょうじゅん-)あるいは標準電極電位と呼んでいる。 なお基準として用いた標準水素電極(SHE)は水素イオンの活量が1すなわち水素イオン指数がゼロ(pH 0)の環境であり生化学ではこうした極限状態の値では参考にならないためにpH 7での電位を求める中間酸化還元電位(ちゅうかん-、中点とも表記することがある)を基準に用いることがあるが、特に断ることなしにこれを単に酸化還元電位と書くことが多い。いずれにせよ、実際の研究では標準水素電極の代わりに、銀−塩化銀電極やカロメル電極など実用的な基準電極を基準にして酸化還元電位を測定することが頻繁に行なわれる。したがって、酸化還元電位を表記する際(特に標準水素電極以外の基準電極を用いた場合)には、その旨を必ず明記せねばならない。.

新しい!!: クーロンと酸化還元電位 · 続きを見る »

電位

電位(でんい、electric potential)は電気的なポテンシャルエネルギーに係る概念であり、 電磁気学とその応用分野である電気工学で用いられる。 点P における電位と点Q における電位の差は、P とQ の電位差 と呼ばれる。 電気工学では電位差は電圧 とも呼ばれる。 電位の単位にはV (ボルト)が用いられる。.

新しい!!: クーロンと電位 · 続きを見る »

電圧の比較

電圧の比較(でんあつのひかく)では、電圧、電位差を比較できるよう、昇順に表にする。 電圧には正負があるが、ここではその絶対値を扱う。また、起電力、電圧降下も扱う。.

新しい!!: クーロンと電圧の比較 · 続きを見る »

電磁気量の単位系

電磁気量の単位系には、国際的に定められている国際単位系(SI)のほかにも、歴史的な経緯から複数の流儀がある。.

新しい!!: クーロンと電磁気量の単位系 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

新しい!!: クーロンと電荷 · 続きを見る »

電束

電束(でんそく、electric flux)は、着目する場所に於ける電気力線の貫通の様子を定量的に規定したもので、面積に対する力線数と向きがある。 電束は1 Cの正電荷から1本発生する。 点電荷Qからr離れた点の電束密度は、電束を半径rの球の表面積で割ったものになる。 電束密度.

新しい!!: クーロンと電束 · 続きを見る »

電束密度

電束密度(でんそくみつど、)は、電荷の存在によって生じるベクトル場である。 電気変位()とも呼ばれる。電場の強度は電荷に力を及ぼす場であり、電束密度とは由来が全く異なる場であるが、真空においては普遍定数により結び付けられてその違いが現れない。誘電体を考える場合には両者の違いが現れるが、誘電体を真空における電荷の分布であると考えることで、電束密度をあらわに用いる必要はなくなる。SIにおける単位はクーロン毎平方メートル(記号: C m)が用いられる。.

新しい!!: クーロンと電束密度 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

新しい!!: クーロンと電気 · 続きを見る »

電気二重層

電気二重層(でんきにじゅうそう)は、荷電粒子が比較的自由に動ける系に電位が与えられたとき、電場にしたがって荷電粒子が移動した結果、界面に正負の荷電粒子が対を形成して層状に並んだもの。 仕事関数の違いや帯電の影響によって、2つの異なる物質が接する界面には、一般的にある程度の電位差が生じる。このため、どちらかの物質中で荷電粒子が移動可能であれば、界面には必ず電気二重層が形成される。具体的には、電気分解を行う際の電解液と電極の界面、コロイド粒子と分散媒の界面、半導体のpn接合面などについて考えられることが多い。 電気二重層は、微小なスケールでの物質の運動に大きな影響を与えるため、ほとんどの電気化学現象のほか、コロイドの安定性や、Micro-TASでの流体力学などを考える際に重要となる。.

新しい!!: クーロンと電気二重層 · 続きを見る »

電気素量

電気素量 (でんきそりょう、elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 で表される。 原子核物理学や化学では粒子の電荷を表すために用いられる。現在ではクォークの発見により、素電荷の1/3を単位とする粒子も存在するが、クォークの閉じ込めにより単独で取り出すことはできず、素電荷が電気量の最小単位である。 素粒子物理学では、電磁相互作用のゲージ結合定数であり、相互作用の大きさを表す指標である。 SIにおける電気素量の値は である2014年CODATA推奨値。SIとは異なる構成のガウス単位系(単位: esu)での値は であるParticle Data Group。.

新しい!!: クーロンと電気素量 · 続きを見る »

電池

アルカリマンガン乾電池 電池(でんち)は、何らかのエネルギーによって直流の電力を生み出す電力機器である。化学反応によって電気を作る「化学電池」と、熱や光といった物理エネルギーから電気を作る「物理電池」の2種類に大別される。.

新しい!!: クーロンと電池 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

新しい!!: クーロンと電流 · 続きを見る »

電流の比較

本項では、電流の比較(でんりゅうのひかく)ができるよう、昇順に表にする。 電流には正負があるが、ここではその絶対値を扱う。また、電流には直流と交流があるが、交流の場合は主に実効値である。.

新しい!!: クーロンと電流の比較 · 続きを見る »

IEC 80000-6

IEC 80000-6:2008は、電磁気に関する量とその単位について定めた国際規格である。 国際電気標準会議(IEC)によって2008年に発行された。規格の名称は「量及び単位―第6部:電磁気」(Quantities and units -- Part 6: Electromagnetism)である。 この規格は、それまでのISO 31-5およびIEC 60027-1を置き換えたもので、国際標準化機構(ISO)と国際電気標準会議(IEC)が共同で発行しているISO/IEC 80000の一部である。日本工業規格(JIS)ではJIS Z 8000-6:2014が相当する。.

新しい!!: クーロンとIEC 80000-6 · 続きを見る »

KC

KC, kc, Kc.

新しい!!: クーロンとKC · 続きを見る »

MKSA単位系

MKSA単位系(エムケーエスエーたんいけい、)は、メートル (metre.

新しい!!: クーロンとMKSA単位系 · 続きを見る »

MKS単位系

MKS単位系(エムケイエス たんいけい)とは、長さの単位メートル(metre; m)・質量の単位キログラム(kilogram; kg)・時間の単位秒(second; s)を基本単位とする、一貫性のある単位系である。 メートル法は、単位名称はメートル・グラム・秒を基準にしており、原器はメートル・キログラムを基準としているが、単位系の基礎となる基本単位は、理論上はそれらと無関係に決めることができる。MKS単位系はそうして選ばれた単位系の1つで、他に、もう1つの有力な単位系としてCGS単位系(C: centimetre G: gram S: second)、マイナーな単位系としてMTS単位系(M: metre T: ton S:second)があった。 厳密には、MKS単位系は力学の単位のみを含む。電磁気学を扱うには、電流の単位アンペア(ampere; A)を基本単位に加えたMKSA単位系とする。しかし、MKSA単位系を含め、広い意味でMKS単位系ということもある。MKSAにさらに3つの基本単位を加えたのが国際単位系 (SI) である。MKSはSIの部分集合であり、SIのうち力学の単位はMKSと共通である。.

新しい!!: クーロンとMKS単位系 · 続きを見る »

RLC回路

RLC回路(RLC circuit)は、抵抗器 (R)、コイル (L)、コンデンサ (C) を直列または並列に接続した電気回路である。LCR回路、共振回路、同調回路とも呼ぶ。この構成によって調和振動子を形成する。 RLC回路はラジオや通信工学や発振回路で様々な応用がある。周波数の全スペクトルから特定の信号の狭い帯域幅を選択するのに使うこともできる。例えば、アナログ式のAMやFMラジオではRLC回路を選局に使っている。典型的な構成では、可変コンデンサが選局用ダイヤルに繋がっていて、Cの値を変化させることで同調する周波数を変化させる。 RLC回路の任意の箇所の電圧や電流は2階微分方程式で表せる。.

新しい!!: クーロンとRLC回路 · 続きを見る »

SI組立単位

SI組立単位(エスアイくみたてたんい、SI derived unit)は、国際単位系 (SI) の基本単位を組み合わせて作ることができる単位である。基本単位の冪乗の乗除だけで作ることができる組立単位は「一貫性のある組立単位」と言い、国際単位系は全ての組立単位が一貫性のある組立単位である、「一貫性のある単位系」である。 ラジアンとステラジアンは、以前は補助単位とされていたが、1995年の国際度量衡総会(CGPM)において、補助単位という区分は廃止すること、この2つの単位は無次元の組立単位として解釈することが決議された。.

新しい!!: クーロンとSI組立単位 · 続きを見る »

毎ファラド

毎ファラド(まいファラド、reciprocal farad)またはダラフ(daraf)は、エラスタンス(静電容量の逆数)の単位である。単位記号は F−1。 「毎ファラド」の名前の通り、静電容量の単位ファラドの逆数であり、1毎ファラドは1クーロンの電荷を蓄えたコンデンサの電位差が1ボルトであるときのエラスタンスと定義される。 「ダラフ」という単位名称は、1936年に電気工学者のが、ファラド(farad)を逆に綴って命名したものである。国際単位系(SI)では「ダラフ」は組立単位「毎ファラド」の固有の名称とは認められていない。.

新しい!!: クーロンと毎ファラド · 続きを見る »

木原太郎 (物理学者)

木原 太郎(きはら たろう、1917年5月5日 - 2001年2月10日)は日本の物理学者。仕事は電磁波論、気体論、プラズマ、宇宙論と多方面にわたるが、その研究には構成粒子の振舞いの物理的イメージからシステムの特性を考える気体論的思考が貫かれている。.

新しい!!: クーロンと木原太郎 (物理学者) · 続きを見る »

流束

流束(りゅうそく、flux)とは、流れの場、あるいはベクトル場の強さを表す量である。 英語のままフラックスとも呼ばれる。 様々なベクトル場に対応した流束が用いられる。流束は流体の理論からの類推であるが、何らかの実体が流れているとは限らない。 なお、面積あたりの流束である流束密度()を指して単に流束と呼ばれることも多い。.

新しい!!: クーロンと流束 · 続きを見る »

新しいSIの定義

7つのSI基本単位と、現行の定義における基本単位の独立性 国際度量衡委員会 (CIPM) の委員会は、SI基本単位の定義を改訂する決議案を提案した。この提案は 2018年11月13-16日の第26回国際度量衡総会 (CGPM) で決議され承認される予定である。新しいSIの施行日は2019年5月20日(メートル条約が締結された日であり世界計量記念日:en:world metrology dayである。)の予定である。.

新しい!!: クーロンと新しいSIの定義 · 続きを見る »

6月14日

6月14日(ろくがつじゅうよっか、ろくがつじゅうよんにち)はグレゴリオ暦で年始から165日目(閏年では166日目)にあたり、年末まであと200日ある。誕生花はハルシャギク、ブーゲンビリア。.

新しい!!: クーロンと6月14日 · 続きを見る »

8月23日

8月23日(はちがつにじゅうさんにち)は、グレゴリオ暦で年始から235日目(閏年では236日目)にあたり、年末まであと130日ある。.

新しい!!: クーロンと8月23日 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »