ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

アインシュタイン多様体

索引 アインシュタイン多様体

微分幾何と数理物理において、アインシュタイン多様体(Einstein manifold)は、リッチテンソルが計量テンソルに比例するリーマン多様体もしくは、擬リーマン多様体である。通常、一般相対論で研究する 4次元のローレンツ多様体とは違い、この条件は、符合と同様に計量の次元も任意であることが可能であるにもかかわらず、この条件と計量が(宇宙定数を持つ)真空のアインシュタイン方程式の解であることとが同値であるとの理由から、アインシュタイン多様体はアルベルト・アインシュタイン(Albert Einstein)の名前に由来している。 M が基礎となる n-次元多様体で、g がその計量テンソルであれば、アインシュタインの条件は、ある定数 k が存在し、 であることを意味する。ここに、Ric は g のリッチテンソルを表わす。k.

9 関係: 幾何学賞リッチ平坦多様体リッチテンソルリッチフローフビニ・スタディ計量ド・ジッター空間カラビ・ヤウ多様体ケーラー多様体ケーラー・アインシュタイン計量

幾何学賞

幾何学賞(きかがくしよう)は、日本数学会幾何学分科会が授与している賞。1987年に創設された。 広い意味での幾何学(微分幾何、トポロジー、代数幾何など)において目覚しい業績をあげた人物、または長年にわたり幾何学に貢献した人物に贈られる。毎年2件以内。共同研究も受賞業績に含まれる。.

新しい!!: アインシュタイン多様体と幾何学賞 · 続きを見る »

リッチ平坦多様体

数学では、リッチ平坦多様体(Ricci-flat manifolds)は、リッチ曲率が 0 であるリーマン多様体である。物理学では、リッチ平坦多様体は、任意の次元で宇宙定数が 0 であるリーマン多様体に対して、アインシュタイン方程式の類似である(vacuum solution)を表わす。リッチ平坦多様体は、通常は宇宙定数が 0 である必要はないアインシュタイン多様体の特別な場合である。 リッチ曲率が、小さな測地用の球の体積がユークリッド空間の中の球の体積から逸脱する量を測る。小さな測地用の球は、体積の変えはしないが、ユークリッド空間の中の標準的な球とは「形」を変えることもありうる。 たとえば、リッチ平坦な多様体の中では、ユークリッド空間の中の円は、変形されて同じ面積を持つ楕円となっていることもありうる。これは(Weyl curvature)のおかげである。 リッチ平坦多様体は、(holonomy group)を制限される場合が多い。重要なケースとして、カラビ・ヤウ多様体や超ケーラー多様体がある。.

新しい!!: アインシュタイン多様体とリッチ平坦多様体 · 続きを見る »

リッチテンソル

微分幾何学において、リッチ曲率テンソル とは、歪んだリーマン多様体上の測地球の体積がユークリッド空間上の球体からどれだけずれるかを表す量である。に因んでその名がある。あるリーマン計量が与えられたとき、その記述する幾何が通常の 次元ユークリッド空間からどれだけ違うか表わす尺度として使うことができる。リッチテンソルはどんな擬リーマン多様体に対しても、リーマン曲率テンソルのトレースとして定義される。計量それ自体と同様、リッチテンソルは多様体の接空間上の対称双線型形式である。 相対性理論では、リッチテンソルは時空の曲率(Rμvと表す)の一部であり、レイチャウデューリ方程式を通じて物質が時間とともにどれだけ収縮もしくは拡散するかの程度に関連する。アインシュタイン方程式を通じて、宇宙に含まれる物質の量にも関連する。微分幾何学では、あるリーマン多様体上のリッチテンソルの下界により、一様な曲率をもつと比較した場合の(も参照)大域的幾何学および位相幾何学的な情報を得ることができる。リッチテンソルが真空のアインシュタイン方程式を満たすとき、その多様体はアインシュタイン多様体であるといい、特に研究されている (cf.)。これと関係して、リッチフロー方程式はある計量がアインシュタイン計量へ発展するさまを記述する。この方法により、ポアンカレ予想が最終的に解決することとなった。.

新しい!!: アインシュタイン多様体とリッチテンソル · 続きを見る »

リッチフロー

2次元多様体上のリッチフローの各ステージ リッチフロー (Ricci flow) とは、微分幾何学における本来の(geometric flow)の一つである。リッチフローは、熱伝導方程式に形式的に似た方法でリーマン多様体の計量の特異点を滑らかに変形する過程である。 (Gregorio Ricci-Curbastro)の名前に因むリッチフローは、最初にリチャード・ハミルトン (Richard Hamilton) により1981年に導入され、リッチ・ハミルトンフロー (Ricci–Hamilton flow) とも呼ばれる。リッチフローは、最初にグリゴリー・ペレルマン (Grigori Perelman) によりポアンカレ予想の証明のために使われ、同様に、サイモン・ブレンデルとリチャード・シェーンによる(differentiable sphere theorem) の証明に使われた。.

新しい!!: アインシュタイン多様体とリッチフロー · 続きを見る »

フビニ・スタディ計量

フビニ・スタディ計量(Fubini–Study metric)は、射影ヒルベルト空間上のケーラー計量である。つまり、複素射影空間 CPn がエルミート形式を持つことを言う。この計量は、もともとは1904年と1905年に(Guido Fubini)と(Eduard Study)が記述したものであった。 ベクトル空間 Cn+1 のエルミート形式は、GL(n+1,C) の中のユニタリ部分群 U(n+1) を定義する。フビニ・スタディ計量は、U(n+1) 作用の下での不変性(スケーリングに対して)により差異を同一視すると決定し、等質性を持つ。フビニ・スタディ計量を持つ CPn は、(スケーリングを渡る)(symmetric space)である。特に、計量の正規化は、スケーリングの適用に依存する。リーマン幾何学においては、正規化された計量を使うことができるので、(2''n'' + 1) 次元球面上のフビニ・スタディ計量は、単純に標準の計量と関連付けられる。代数幾何学では、正規化を使い、CPn をホッジ多様体とすることができる。 n endowed with a Hermitian form.

新しい!!: アインシュタイン多様体とフビニ・スタディ計量 · 続きを見る »

ド・ジッター空間

数学や物理学において、ド・ジッター空間 (de Sitter space) は、通常のユークリッド空間の球面の、ミンコフスキー空間あるいは時空における類似物である。n 次元ド・ジッター空間は dSn と書き、(標準のリーマン計量を持つ)''n'' 次元球面のローレンツ多様体での類似である。この空間は、最大の対称性を持ち、正の定曲率を持ち、3 以上の n に対し、単連結である。ド・ジッター空間は反ド・ジッター空間と同様に、ライデン大学の天文学の教授で、ライデン天文台の天文台長であったウィレム・ド・ジッター (Willem de Sitter) (1872–1934) の名前に因んでいる。ウィレム・ド・ジッターとアルベルト・アインシュタイン (Albert Einstein) は、1920年代にライデンで、宇宙の時空の構造について研究を共にした。 一般相対論のことばでは、ド・ジッター空間は最大対称性を持ち、(正の真空エネルギー密度と負の圧力に対応する)正(反発力)の宇宙定数 \Lambda を持つアインシュタイン場の方程式の(vacuum solution)である。( 3つの空間次元と 1つの時間次元)では、ド・ジッター空間は物理的な宇宙の天文学的なモデルである。ド・ジッター宇宙(de Sitter universe)を参照。 ド・ジッター空間はウィレム・ド・ジッターにより、また同時に、独立してトゥーリオ・レヴィ=チヴィタ (Tullio Levi-Civita) により発見された。 さらに最近は、ド・ジッター空間がミンコフスキー空間を使うというよりも、特殊相対論の設定として考えられるようになった。その理由は、(group contraction)は、ド・ジッター空間の等長変換群をポアンカレ群へと還元し、(semi-simple group)というよりも単純群の中へ、時空変換部分群やポアンカレ群のローレンツ変換部分群を統一することを可能とする。この特殊相対論の定式化を(de Sitter relativity)と呼ぶ。 n, is the Lorentzian manifold analog of an ''n''-sphere (with its canonical Riemannian metric); it is maximally symmetric, has constant positive curvature, and is simply connected for n at least 3.

新しい!!: アインシュタイン多様体とド・ジッター空間 · 続きを見る »

カラビ・ヤウ多様体

ラビ・ヤウ多様体は、代数幾何などの数学の諸分野や数理物理で注目を浴びている特別なタイプの多様体。特に超弦理論では、時空の余剰次元が6次元(実次元)のカラビ・ヤウ多様体の形をしていると予想されている。この余剰次元の考え方が、ミラー対称性の考えを導くことになった。 カラビ・ヤウ多様体は、1次元の楕円曲線や2次元のK3曲面の高次元版の複素多様体であり、コンパクトケーラー多様体で標準バンドルが自明なものとして定義されることが多い。ただし、他にも類似の(しかし互いに同値ではない)いくつかの定義がある。では、"カラビ・ヤウ空間"と呼ばれた。最初は微分幾何学の立場から、エウゲニオ・カラビで研究され、シン=トゥン・ヤウが、これらがリッチ平坦な計量を持つであろうというカラビ予想を証明したことから、カラビ・ヤウ多様体と命名された。.

新しい!!: アインシュタイン多様体とカラビ・ヤウ多様体 · 続きを見る »

ケーラー多様体

数学、特に微分幾何学において、ケーラー多様体(Kähler manifold)とは、複素構造、リーマン構造、シンプレクティック構造という3つが互いに整合性を持つ多様体である。ケーラー多様体 X 上には、ケーラーポテンシャルが存在し、X の計量に対応するレヴィ・チヴィタ接続が、標準直線束上の接続を引き起こす。 滑らかな射影代数多様体はケーラー多様体の重要な例である。小平埋め込み定理により、正の直線束を持つケーラー多様体は、常に射影空間の中へ双正則に埋め込むことができる。 ケーラー多様体の名前はドイツ人数学者エーリッヒ・ケーラー (Erich Kähler) にちなんでいる。.

新しい!!: アインシュタイン多様体とケーラー多様体 · 続きを見る »

ケーラー・アインシュタイン計量

微分幾何学において、複素多様体上のケーラー・アインシュタイン計量 (Kähler–Einstein metric) は、ケーラー計量かつアインシュタイン計量であるようなリーマン計量である。多様体がケーラー・アインシュタインであるとは、ケーラー・アインシュタイン計量を持つ場合を言う。これらの中で最も重要なものは、カラビ・ヤウ多様体であり、これは、ケーラーかつリッチ平坦なものである。 この分野の最も重要な問題は、コンパクトケーラー多様体にケーラー・アインシュタイン計量が存在することである。 ケーラー計量がある場合には、リッチ曲率はケーラー計量に比例するので、第一チャーン類は、負か、0か、または、正のいずれかである。 第一チャーン類が負の場合は、オーバン(Aubin)とヤウ(Shing-Tung Yau)が常にケーラー・アインシュタイン計量が存在することを証明した。 第一チャーン類が 0 の場合は、ヤウは常にケーラー・アインシュタイン計量が存在するというカラビ予想を証明した。ヤウはこの仕事でフィールズ賞を受賞した。これがカラビ・ヤウ多様体の名称の由来である。 残りの、第一チャーン類が正の場合(ファノ多様体と言う)が最も困難である。この場合は、存在に非自明な障害が存在する。2012年、チェン(Chen)、ドナルドソン(Donaldson)、スン(Sun)は、この場合の存在性は K-安定性と呼ばれる代数幾何学的な条件に同値であることを証明した。彼らの証明は、アメリカ数学会誌 (the Journal of the American Mathematical Society) の一連の論文に発表された。.

新しい!!: アインシュタイン多様体とケーラー・アインシュタイン計量 · 続きを見る »

ここにリダイレクトされます:

アインシュタイン計量

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »