ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ブラックホールの熱力学と量子重力理論

ショートカット: 違い類似点ジャカード類似性係数参考文献

ブラックホールの熱力学と量子重力理論の違い

ブラックホールの熱力学 vs. 量子重力理論

物理学において、ブラックホール熱力学(ブラックホールねつりきがく、black hole thermodynamics)は、ブラックホールの事象の地平線の存在を含む熱力学の法則を探す研究分野である。黒体輻射 (black body radiation) の統計力学の研究が量子力学の到来を促したのと同じように、ブラックホールの統計力学を理解しようとする努力は、量子重力理論の理解に深い影響を与えてきており、ホログラフィック原理の定式化を導いた。 -->. 量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

ブラックホールの熱力学と量子重力理論間の類似点

ブラックホールの熱力学と量子重力理論は(ユニオンペディアに)共通で6ものを持っています: AdS/CFT対応弦理論ループ量子重力理論ブラックホールホログラフィック原理量子力学

AdS/CFT対応

論物理学では、AdS/CFT対応(AdS/CFTたいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論の類似物を意味し、対応する反対側は、反ド・ジッター空間(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論やM-理論のことばで定式化された。 双対性は、弦理論と量子重力の理解の主要な発展の現れである。この理由は、双対性がある境界条件を持つ弦理論の(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフトが提唱し、レオナルド・サスキンドにより改善されている。 加えて、の場の量子論の研究への強力なツールを提供している。 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学や物性物理学での多くの研究に使われてきている。 AdS/CFT対応は、最初に1997年末、フアン・マルダセナにより提起された。この対応の重要な面は、、、アレクサンドル・ポリヤコフの論文や、エドワード・ウィッテンの論文により精査された。2014にはマルダセナの論文の引用は10000件を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。.

AdS/CFT対応とブラックホールの熱力学 · AdS/CFT対応と量子重力理論 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

ブラックホールの熱力学と弦理論 · 弦理論と量子重力理論 · 続きを見る »

ループ量子重力理論

ループ量子重力理論(ループりょうしじゅうりょくりろん)は、時空(時間と空間)にそれ以上の分割不可能な最小単位が存在することを記述する理論である。超弦理論と並び、重力の古典論である一般相対性理論を量子化した量子重力理論の候補である。 同じく量子重力理論の候補である超弦理論は、時空は背景場として最初からそこに存在するものとして定義しており、理論自身のダイナミクスにより決定されているわけではない。それに対しループ量子重力理論は、一般相対論と同様に理論自身が時空そのものを決定している。(背景独立性).

ブラックホールの熱力学とループ量子重力理論 · ループ量子重力理論と量子重力理論 · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

ブラックホールとブラックホールの熱力学 · ブラックホールと量子重力理論 · 続きを見る »

ホログラフィック原理

ホログラフィック原理 (holographic principle) は、空間の体積の記述はある領域の境界、特にのような光的境界の上に符号化されていると見なすことができるという量子重力および弦理論の性質である。ヘーラルト・トホーフトによって最初に提唱され、レオナルド・サスキンドによって精密な弦理論による解釈が与えられた。サスキンドはトホーフトとのアイデアを組み合わせることからこの解釈を導いた。ソーンは1978年に弦理論はより低次元の記述が可能であり、ここから現在ホログラフィック的と呼ばれるやり方で重力が現れることを見出していた。 より大きなより思弁的な意味では、この理論は、全宇宙は宇宙の地平面上に「描かれた」2次元の情報構造と見なすことができ、我々が観測する3次元は巨視的スケールおよび低エネルギー領域での有効な記述にすぎないことを示唆する。宇宙の地平面は、有限の領域で時間とともに膨張していることもあり、数学的には正確に定義されていない。 ホログラフィック原理はブラックホール熱力学から着想された。ブラックホール熱力学ではどんなスケールの領域でも最大エントロピーはその領域の半径の三乗ではなく二乗に比例することを示唆する。ブラックホールの場合、ブラックホールに落ち込んだすべての物体が持つ情報は事象の地平面の表面の変動に完全に含まれることが推測される。ホログラフィック原理はブラックホール情報パラドックスを弦理論の枠組み内で解決する。.

ブラックホールの熱力学とホログラフィック原理 · ホログラフィック原理と量子重力理論 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

ブラックホールの熱力学と量子力学 · 量子力学と量子重力理論 · 続きを見る »

上記のリストは以下の質問に答えます

ブラックホールの熱力学と量子重力理論の間の比較

量子重力理論が43を有しているブラックホールの熱力学は、48の関係を有しています。 彼らは一般的な6で持っているように、ジャカード指数は6.59%です = 6 / (48 + 43)。

参考文献

この記事では、ブラックホールの熱力学と量子重力理論との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »