ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

ガラスとショット・ブラスト

ショートカット: 違い類似点ジャカード類似性係数参考文献

ガラスとショット・ブラストの違い

ガラス vs. ショット・ブラスト

ガラス工芸 en) 建築物の外壁に用いられているガラス ガラス(、glass)または硝子(しょうし)という語は、物質のある状態を指す場合と特定の物質の種類を指す場合がある。. ョットブラスト は、単にブラストとも呼ばれ、投射材と呼ばれる粒体を加工物(ワーク)に衝突させ、ワークの加工等を行う手法である。 対象となるワークは金属、セラミック、ガラス、プラスチック等硬質なものが主ではあるが、ゴムのような軟質なものに対しても冷却硬化させてから用いる場合がある。 この手法は主にワークのバリの除去、表面研削、梨地加工のような模様付けなど広い意味での研削に用いられているが、金属の表面近傍に残留圧縮応力を付与させることによりばねやギアなどの疲労強度の向上、耐応力腐食割れの向上等にも用いられ、これを「ショットピーニング」という。 変わった用途として投射材の素材そのものをワークに転写することによりワーク表面を改質コーティングする手法もある。(二硫化モリブデン粒子を投射しワークに転写させて摩擦を減らす加工等) 日本にこの技術がもたらされたのは戦後のことで、日本鋳工株式会社(後の日本ブラストマシン株式会社、現在のJFEプラントエンジ株式会社)の取締役技監であった福田連博士がショット・ブラストを使用した金属疲労実験の成功により、同社がブラストマシン国産第一号機を開発、製造した。  .

ガラスとショット・ブラスト間の類似点

ガラスとショット・ブラストは(ユニオンペディアに)共通で3ものを持っています: アモルファス金属酸化アルミニウム

アモルファス

アモルファス、あるいは 非晶質(ひしょうしつ)とは、結晶のような長距離秩序はないが、短距離秩序はある物質の状態。これは熱力学的には、非平衡な準安定状態である。 は、(形を持つ)に「非」の意味の接頭辞 a‐ が付いた語(19世紀にスウェーデンのイェンス・ベルセリウスが非結晶の固体に対して命名した)。結晶は、明礬や水晶のようにそれぞれ固有の結晶形態を持っており、 である。しかし、急冷や不純物が混じった状態で出来た固体は、時間的空間的に規則的な原子配列が取れず非晶質となり、不定形である。 アモルファス状態は、非金属ではしばしば見られる状態である。しかし、金属にもアモルファス状態が存在することは、アメリカのポール・デュエイ カリフォルニア工科大学教授らが1960年に発見した。.

アモルファスとガラス · アモルファスとショット・ブラスト · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

ガラスと金属 · ショット・ブラストと金属 · 続きを見る »

酸化アルミニウム

酸化アルミニウム(さんかアルミニウム、)は、化学式がAlOで表されるアルミニウムの両性酸化物である。通称はアルミナ(α-アルミナ)、礬土(ばんど)。天然にはコランダム、ルビー、サファイアとして産出する。おもに金属アルミニウムの原料として使われるほか、硬度を生かして研磨剤、高融点を生かして耐火物としての用途もある。立方晶系のγ-アルミナは高比表面積を持つことから触媒として重要である。.

ガラスと酸化アルミニウム · ショット・ブラストと酸化アルミニウム · 続きを見る »

上記のリストは以下の質問に答えます

ガラスとショット・ブラストの間の比較

ショット・ブラストが23を有しているガラスは、306の関係を有しています。 彼らは一般的な3で持っているように、ジャカード指数は0.91%です = 3 / (306 + 23)。

参考文献

この記事では、ガラスとショット・ブラストとの関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »