ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

Vincenty法と地球楕円体

ショートカット: 違い類似点ジャカード類似性係数参考文献

Vincenty法と地球楕円体の違い

Vincenty法 vs. 地球楕円体

Vincenty法(Vincenty's formulae)とは楕円体上の2点間の距離を計算する測地法の反復計算アルゴリズムである。 (1975a)によって考案された。. 地球楕円体(ちきゅうだえんたい、Earth ellipsoid)とは、測地学において地球のジオイド(平均海面)の形を近似した回転楕円体(扁球)を指す。その中心は地球の重心に、短軸は自転軸に一致させる。 現在の測地系は陸域ではGRS80地球楕円体を採用する場合が多い。測地測量の基準として用いる地球楕円体は「準拠楕円体」とも呼ぶ。 地球楕円体の面に沿った経線弧(南北方向の測地線)を子午線弧と呼ぶ。歴史的には、子午線弧の研究を通じて、地球が球体を成していることが示され、また地球楕円体は、赤道半径に比べて極半径の小さい扁球なのか、それとも長球なのかを決める研究が行われた。.

Vincenty法と地球楕円体間の類似点

Vincenty法と地球楕円体は(ユニオンペディアに)共通で8ものを持っています: 子午線弧地球楕円体回転楕円体楕円体測地学測地系測地線扁平率

子午線弧

子午線弧(しごせんこ、Meridian arc)とは、測地学において、地球表面または地球楕円体に沿った子午線(経線)の弧を指す。子午線は楕円弧で南北方向に延びる測地線となる。 天文学において、2地点の天文緯度測定と子午線弧の長さとを結合することで地球の円周・半径を決定した。その始まりは、紀元前3世紀のエジプトのエラトステネスで、地球が球体であることを定量的に示した。 緯度差1分に相当する子午線弧長は、海里の定義にも参考にされた。.

Vincenty法と子午線弧 · 地球楕円体と子午線弧 · 続きを見る »

地球楕円体

地球楕円体(ちきゅうだえんたい、Earth ellipsoid)とは、測地学において地球のジオイド(平均海面)の形を近似した回転楕円体(扁球)を指す。その中心は地球の重心に、短軸は自転軸に一致させる。 現在の測地系は陸域ではGRS80地球楕円体を採用する場合が多い。測地測量の基準として用いる地球楕円体は「準拠楕円体」とも呼ぶ。 地球楕円体の面に沿った経線弧(南北方向の測地線)を子午線弧と呼ぶ。歴史的には、子午線弧の研究を通じて、地球が球体を成していることが示され、また地球楕円体は、赤道半径に比べて極半径の小さい扁球なのか、それとも長球なのかを決める研究が行われた。.

Vincenty法と地球楕円体 · 地球楕円体と地球楕円体 · 続きを見る »

回転楕円体

回転楕円体(扁球) 回転楕円体(長球) 回転楕円体(かいてんだえんたい、spheroid)は、楕円をその長軸または短軸を回転軸として得られる回転体をいう。あるいは、3径のうち2径が等しい楕円体とも定義できる。 回転楕円体は「地球の形」を近似するのに用いられるために重要であり、この回転楕円体を地球楕円体 (Earth ellipsoid) と呼ぶ。様々な地球楕円体のうち、個々の測地系が準拠すべき地球楕円体を特に準拠楕円体 (reference ellipsoid) と呼ぶ。.

Vincenty法と回転楕円体 · 回転楕円体と地球楕円体 · 続きを見る »

楕円体

楕円体(だえんたい、ellipsoid)とは楕円を三次元へ拡張したような図形であり、その表面は二次曲面である。楕円面の方程式は である。ここで a, b, c はそれぞれx軸、y軸、z軸方向の径の半分の長さに相当する。なお a.

Vincenty法と楕円体 · 地球楕円体と楕円体 · 続きを見る »

測地学

測地学(そくちがく、geodesy)とは、地球に固定した座標系を仮定し、その座標系を用いて、地球上の任意の点の位置を決定する方法、精度、その背景にある地球力学的な諸問題を扱う分野をいう。.

Vincenty法と測地学 · 地球楕円体と測地学 · 続きを見る »

測地系

測地系(そくちけい)は、地球上の位置を経緯度(経度・緯度)及び標高を用いる座標によって表すための系(システム)を指す。.

Vincenty法と測地系 · 地球楕円体と測地系 · 続きを見る »

測地線

測地線(そくちせん、)とは、直線の概念を曲がった空間において一般化したものである。 計量が定義される空間においては、測地線は、2つの離れた点を結ぶ(局所的に)最短な線として定義される。アフィン接続が定義される空間においては、測地線は、曲線のうち、その接ベクトルが曲線に沿って移動しても平行に保たれるような曲線(測地的曲率が常に0)として定義される。測地線の中でその長さが2点間の距離に等しくなるものを最短測地線という。 言葉の由来は、測地学からであり、地球上の2点間の最短ルート(大円の一部)による。この概念は、数学的な空間にも拡張され、例えばグラフ理論ではグラフ上の2つの頂点(vertex)や結節点 () 間の測地線が定義されている。一般相対性理論では、光は曲がった空間での測地線を進むという原理に基づいて構築されている。.

Vincenty法と測地線 · 地球楕円体と測地線 · 続きを見る »

扁平率

扁平率(へんぺいりつ、扁率、扁平度とも、flattening, oblateness)とは、楕円もしくは回転楕円体が、円もしくは球に比べてどれくらい扁平か(つぶれているか)を表す値である。円もしくは球では値が 0 である。つぶれるに従って値は 1 に近づく。 楕円または回転楕円体の長半径を a、短半径を b とすると、扁平率fは で定義される。(a - b): a のように比の形で表すこともある。 自転する天体の場合、遠心力によって赤道半径が極半径に比べて大きい扁球となる。したがって a が赤道半径、b が極半径となる。地球楕円体の扁平率としては、GRS80測地系のパラメータ値が用いられることが多い。.

Vincenty法と扁平率 · 地球楕円体と扁平率 · 続きを見る »

上記のリストは以下の質問に答えます

Vincenty法と地球楕円体の間の比較

地球楕円体が45を有しているVincenty法は、23の関係を有しています。 彼らは一般的な8で持っているように、ジャカード指数は11.76%です = 8 / (23 + 45)。

参考文献

この記事では、Vincenty法と地球楕円体との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »