ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

DNA修復

索引 DNA修復

DNA修復(DNAしゅうふく、)とは、生物細胞において行われている、様々な原因で発生するDNA分子の損傷を修復するプロセスのことである。DNA分子の損傷は、細胞の持つ遺伝情報の変化あるいは損失をもたらすだけでなく、その構造を劇的に変化させることでそこにコード化されている遺伝情報の読み取りに重大な影響を与えることがあり、DNA修復は細胞が生存しつづけるために必要な、重要なプロセスである。生物細胞にはDNA修復を行う機構が備わっており、これらをDNA修復機構、あるいはDNA修復系と呼ぶ。.

93 関係: ABC輸送体ADPリボース化がん抑制遺伝子塩基除去修復変異原姉妹染色分体寿命ナンセンス突然変異ミトキサントロンミスセンス突然変異ノーベル化学賞チェルノブイリ原発事故の影響ポリメラーゼポール・モドリッチユビキチンヌクレオチド除去修復トマス・リンダールヘリカーゼブレークスルー・オブ・ザ・イヤープロポリスヒストンヒストン脱アセチル化酵素ピリミジン塩基テロメラーゼテロメアデイノコッカス・ラディオデュランスデオキシリボ核酸フラボタンパク質フレームシフト突然変異ファンコーニ貧血フォトリアーゼ分子標的治療切断 (DNA)アルバート・ラスカー基礎医学研究賞アジズ・サンジャルイルジンインテインウェルナー症候群エピジェネティクスオラパリブカルムスチンカロリー制限カエル卵抽出液クリプトクロムゲノム編集コメットアッセイコンデンシンコヒーシンコケイン症候群シクロヘキシミド...ジンクフィンガーヌクレアーゼジェミニウイルス科サプレッサ突然変異六価クロム突然変異細胞周期細胞周期チェックポイント細胞老化点突然変異生物学における不老不死生物学に関する記事の一覧DNAミスマッチ修復DNAポリメラーゼDNAメチル化DNAリガーゼDNAトポイソメラーゼDNA複製適応的突然変異非相同末端結合非表現突然変異転写 (生物学)近藤宗平葉圏色素色素性乾皮症老化FtsZGC含量P53遺伝子Period (遺伝子)Rad51Reina (シンガーソングライター)RRM2BSMCタンパク質抗酸化物質極限環境微生物毛細血管拡張性運動失調症活性化誘導シチジンデアミナーゼ活性酸素温泉藻減数分裂日焼け5-メチルシトシン インデックスを展開 (43 もっと) »

ABC輸送体

ABC輸送体(ABCゆそうたい)は、ABCトランスポーター (ABC transporters) 、ABC蛋白質(ABC proteins)とも呼ばれる。ATP結合カセット輸送体 (ATP-binding cassette transporters) の略称。ATPのエネルギーを用いて物質の輸送を行う膜輸送体の一群である。構造的特徴を共有する非常に大きなタンパク質スーパーファミリーをなし、現生のすべての生物に存在する。.

新しい!!: DNA修復とABC輸送体 · 続きを見る »

ADPリボース化

ADPリボースの構造 ADPリボース化(ADP-ribosylation)はタンパク質の翻訳後修飾の一つで、1つまたはそれ以上のアデノシン二リン酸(ADP)リボースを付加する反応である。この反応は細胞間の情報伝達やDNA修復、アポトーシスなど多くの細胞機能に関わっている。.

新しい!!: DNA修復とADPリボース化 · 続きを見る »

がん抑制遺伝子

がん抑制遺伝子(がんよくせいいでんし、tumor suppressor gene)は、がんの発生を抑制する機能を持つタンパク質(がん抑制タンパク質)をコードする遺伝子である。特に有名ながん抑制遺伝子として、p53、Rb、BRCA1などが挙げられる。2倍体の細胞において2つのがん抑制遺伝子両方が損傷することなどにより、結果としてがん抑制タンパク質が作られなくなったり、損傷遺伝子からの異常ながん抑制タンパク質が正常がん抑制タンパク質の機能を阻害すると、組織特異的にがん化が起きると考えられている。 今までに、十数以上のがん抑制遺伝子が知られており、組織特異的であることが多い。ただしp53の変異は大腸癌、乳癌など非組織特異的とみられる。一方、Rbの変異は網膜芽細胞腫、骨肉腫など、BRCA1の変異は家族性乳がん、子宮がんなど、MSH2の変異は大腸癌などに見られる。これらのがん抑制タンパク質の機能は細胞周期チェックポイント制御、転写因子制御、転写、DNA修復など多岐にわたっている。これらのがん抑制遺伝子群の諸機能が解明されることにより、がん発生メカニズムの巨大な謎が解かれつつあると考えられている。.

新しい!!: DNA修復とがん抑制遺伝子 · 続きを見る »

塩基除去修復

塩基除去修復(えんきじょきょしゅうふく、base excision repair)は、生体に備わっているDNA修復機構の1つで、DNAを構成する塩基の損傷を修復する。省略してBERと呼ばれる。 DNAを構成する塩基は恒常的に活性酸素種やアルキル化剤、また自発的な加水分解などにより損傷を受けており、これらの損傷塩基が修復されずに放置されると突然変異など、細胞にとって有害な影響を及ぼす可能性がある。生体内において、このような1塩基の損傷は塩基除去修復機構によって修復されることが知られている。 BERはDNA中に生じた損傷塩基を認識し、損傷塩基を切断、生じたギャップを鋳型鎖の情報をもとに埋めることで遺伝情報の維持に寄与している。これらの反応にはDNAグリコシラーゼ、APエンドヌクレアーゼ、DNAポリメラーゼ、DNAリガーゼといった酵素が関与している。 Category:分子生物学 Category:DNA修復.

新しい!!: DNA修復と塩基除去修復 · 続きを見る »

変異原

変異原(へんいげん、mutagen)とは、生物の遺伝情報(DNAあるいは染色体)に変化をひき起こす作用を有する物質または物理的作用(放射線など)をいう。GHSの定義では、「変異原性物質(Mutagen)とは、細胞の集団または生物体に突然変異を発生する頻度を増大させる物質」であり、「突然変異(Mutation)とは、細胞内の遺伝物質の量または構造における恒久的な変化」である。 変異原としての性質あるいは作用の強さを変異原性(へんいげんせい、mutagenicity)もしくは遺伝子毒性(いでんしどくせい)と呼ぶ。 また遺伝毒性(いでんどくせい、genotoxicity)を持つ物質の一部はその原因として変異原性を有する。つまり変異原性を原因とする遺伝形質の変化(発がん、催奇形性)は毒性として認識されれば遺伝毒性と呼ばれる。また、変異原性を原因とする形質の変化が生殖機能に影響する場合や次世代の形質転換に及ぶ場合は生殖毒性と呼ばれる。 特に、発がんにおけるイニシエーター(initiator。発がん性物質で、遺伝情報に異常を起こしてがんの原因を作るもの)のほとんどは変異原性物質でもあることが実験的に知られている。 日本においては、医薬品(医薬品医療機器等法)、食品添加物(食品衛生法)、農薬(農薬取締法)、新規化学物質(化学物質の審査及び製造等の規制に関する法律)および労働環境検査(労働安全衛生法)についてサンプルの変異原性試験が求められている。主要な物質については変異原性試験と併せて遺伝毒性や生殖毒性の評価も行われる。 つまり、変異原性を調べることは遺伝毒性、発がん性の可能性がある物質を見つけ出すのにも役立つと考えられ、変異原性試験は発がん性物質のスクリーニング試験(候補の絞り込み)としての意味も持つ。.

新しい!!: DNA修復と変異原 · 続きを見る »

姉妹染色分体

姉妹染色分体(しまいせんしょくぶんたい:sister chromatids)とは、DNA複製後にできる、同じ遺伝情報をもつ2本の染色分体のことをいう。複製後の染色体は一対の姉妹染色分体から構成される、と言い換えることもできる。.

新しい!!: DNA修復と姉妹染色分体 · 続きを見る »

寿命

寿命(じゅみょう)とは、命がある間の長さのことであり、生まれてから死ぬまでの時間のことである。転じて、工業製品が使用できる期間、あるいは様々な物質・物体の発生・出現から消滅・破壊までの時間などを言うこともある。.

新しい!!: DNA修復と寿命 · 続きを見る »

ナンセンス突然変異

ナンセンス突然変異(ナンセンスとつぜんへんい、英:Nonsense mutation.)は、終止変異とも言われ、アミノ酸のコドンを終止コドンに変える変異を言い、非常に影響の大きい変異である。ポリペプチド鎖の長さは、終止コドンが表れた場所によって決まり、遺伝子のはじめに近い位置に終止コドンが出た場合は、短いポリペプチド鎖になる。真核生物の場合、非常に早い段階に終止コドンを持つmRNAは、ナンセンスであるためmRNA分解によって、分解される。 ただ、サプレッサー変異で、変異tRNAを持つ場合、このナンセンス突然変異を抑えることがあるということが知られている。.

新しい!!: DNA修復とナンセンス突然変異 · 続きを見る »

ミトキサントロン

ミトキサントロン(Mitoxantrone)はアントラキノン系の癌化学療法剤の一つである。商品名ノバントロン。.

新しい!!: DNA修復とミトキサントロン · 続きを見る »

ミスセンス突然変異

ミスセンス突然変異(みすせんすとつぜんへんい)とはコドン内の塩基の置換によって異なったアミノ酸残基が合成中のポリペプチド鎖に入り、異常蛋白質が産生されること。点突然変異の一種である。 鎌状赤血球貧血症がその例である。.

新しい!!: DNA修復とミスセンス突然変異 · 続きを見る »

ノーベル化学賞

ノーベル化学賞(ノーベルかがくしょう、Nobelpriset i kemi)はノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。化学の分野において重要な発見あるいは改良を成し遂げた人物に授与される。 ノーベル化学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(物理学賞と共通)がデザインされている。.

新しい!!: DNA修復とノーベル化学賞 · 続きを見る »

チェルノブイリ原発事故の影響

* チェルノブイリ原発事故の影響(チェルノブイリげんぱつじこのえいきょう)では、1986年4月26日のチェルノブイリ原子力発電所事故による、放射線などによる疾病や影響、旧ソビエト連邦やソ連解体後のウクライナへの影響、世界中での原子力政策や大衆運動など様々な影響について述べる。 長期の低線量被曝の影響を把握するには包括的な研究が必要とされ、予算上の制約などの懸念が指摘されてはいるが、欧州委員会は健康被害の全体像を研究するためのプロジェクトとしてチェルノブイリ健康研究アジェンダ (ARCH: Agenda for Research on Chernobyl Health) を立ち上げ、長期的な研究計画の構築が進められている。.

新しい!!: DNA修復とチェルノブイリ原発事故の影響 · 続きを見る »

ポリメラーゼ

ポリメラーゼ(英語:Polymerase)とは、DNAやRNAのような核酸ポリマーや長鎖を合成する酵素の事である。 酵素を分類整理しているEC番号では、EC 2.7.7.6/7/19/48/49という番号が割り当てられている。 DNAポリメラーゼやRNAポリメラーゼは、塩基対形成相互作用によって、DNAまたはRNAのテンプレート鎖を複製し、それぞれDNAおよびRNA分子を組み立てるために使用される。.

新しい!!: DNA修復とポリメラーゼ · 続きを見る »

ポール・モドリッチ

ポール・モドリッチ(Paul Lawrence Modrich, 1946年6月13日 - )はアメリカ合衆国の生物学者である。専門は生化学、遺伝学で、特にDNAミスマッチ修復の研究が有名である。デューク大学の教授で、ハワード・ヒューズ医学研究所の研究員である。 2015年、「DNA修復機構の解明」により、トマス・リンダール、アジズ・サンジャルと共に、ノーベル化学賞を受賞した。.

新しい!!: DNA修復とポール・モドリッチ · 続きを見る »

ユビキチン

ユビキチンの構造のリボン図 ユビキチン (ubiquitin) は76個のアミノ酸からなるタンパク質で、他のタンパク質の修飾に用いられ、タンパク質分解、DNA修復、翻訳調節、シグナル伝達などさまざまな生命現象に関わる。至る所にある (ubiquitous) ことからこの名前が付いた。進化的な保存性が高く、すべての真核生物でほとんど同じアミノ酸配列をもっているが、古細菌は全種がプロテアソームを持つもののユビキチンを持つのはごく一部の系統に限られる("Caldiarchaeum"、"Lokiarchaeum"等)。真正細菌には存在しない。.

新しい!!: DNA修復とユビキチン · 続きを見る »

ヌクレオチド除去修復

ヌクレオチド除去修復(Nucleotide excision repair)は、生体に備わっているDNA修復機構の一つで、紫外線により生じるチミンダイマーや種々の化学物質によりDNA中に生じた損傷を修復する。塩基除去修復(BER)よりも大きなDNA損傷を認識し、除去・修復する。省略してNERと呼ばれる。 紫外線により導入されるDNA損傷(チミンダイマー、6−4光産物)の大多数がNERにより除去・修復され、細胞に突然変異が導入されるのを防いでいることから、NERは非常に重要な修復機構であると考えられる。NERの重要性はNERタンパク質を欠くことによって色素性乾皮症やコケイン症候群といった重篤なヒト遺伝病となることからも分かる。 塩基除去修復ではDNA中に生じた損傷塩基を損傷特異的なDNAグリコシラーゼが認識するが、NER酵素はDNAの2重らせん構造の大きな歪みを認識する。その後、損傷を含んだ短い1本鎖DNA領域をゲノムDNAから除去し、ゲノムDNAに1本鎖ギャップを形成する。生じた1本鎖ギャップはDNAポリメラーゼにより、鋳型鎖の情報をもとに合成され、最後に残ったニックがDNAリガーゼにより埋められ、修復が完結する。NERは、DNA損傷認識の違いにより全ゲノムNER(Global genomic NER)と転写と共役したNER(Transcription coupled NER,TCRとも呼ばれる)の2つのサブパスウェイに分類される。.

新しい!!: DNA修復とヌクレオチド除去修復 · 続きを見る »

トマス・リンダール

トマス・ローベルト・リンダール(Tomas Robert Lindahl, 1938年1月28日- )は、スウェーデンの医学者。専門は癌研究。フランシス・クリック研究所名誉研究員。ストックホルム生まれ。塩基除去修復の研究が評価され、「DNA修復機構の解明」により、ポール・モドリッチ、アジズ・サンジャルと共に、2015年ノーベル化学賞を受賞した。.

新しい!!: DNA修復とトマス・リンダール · 続きを見る »

ヘリカーゼ

ヘリカーゼ(helicase; ヘリケース)は核酸のリン酸エステル骨格に沿って動きながら絡み合う核酸をほどく酵素の総称である。すべての生物に必須であると考えられる。DNAの2本鎖をほどくものを特にDNAヘリカーゼ、RNAの二次構造をほどくものをRNAヘリカーゼと呼び、一方構造上ヘリカーゼに類似しているがDNA上を動くだけで核酸をほどかないものはDNAトランスロケースと呼ぶ。.

新しい!!: DNA修復とヘリカーゼ · 続きを見る »

ブレークスルー・オブ・ザ・イヤー

ブレークスルー・オブ・ザ・イヤー(Breakthrough of the Year)は、サイエンス誌がその年の最も発展的な研究に与える賞である。1989年に始まった「今年の分子」(Molecule of the Year)に由来し、『タイム』誌のパーソン・オブ・ザ・イヤーに着想を得て、1998年にBreakthrough of the Yearと改名された。ブレークスルー・オブ・ザ・イヤーは、科学の世界で最も際立った成果の1つと広く認識されている。.

新しい!!: DNA修復とブレークスルー・オブ・ザ・イヤー · 続きを見る »

プロポリス

プロポリスで隙間が埋められた巣箱 巣に付着したプロポリス プロポリス(propolis)は、ミツバチが木の芽や樹液、あるいはその他の植物源から集めた樹脂製混合物である佐々木1994、116-117頁。。蜂ヤニともいう佐々木1994、116頁。。プロポリスという名前は、もともとギリシャ語で、「プロ(pro)」は「前」とか「守る(防御)」という意味を持ち、「ポリス(polis)」は「都市」という意味を持っている。この2つの語が合わさったプロポリスは、「都市(巣)を守る」という意味がある。 プロポリスは巣の隙間を埋める封止剤として使われている。およそ6 mm以下の小さな隙間のために使われ、より大きな空間は通常蜜蝋で埋められる。色はどの植物から取られたかに依存するが、最も一般的には暗褐色である。プロポリスは室温以上で粘着性がある。低温では硬く、非常に壊れやすくなる。.

新しい!!: DNA修復とプロポリス · 続きを見る »

ヒストン

ヒストン(histone)は、真核生物のクロマチン(染色体)を構成する主要なタンパク質である。.

新しい!!: DNA修復とヒストン · 続きを見る »

ヒストン脱アセチル化酵素

ヒストン脱アセチル化酵素(-だつあせちるかこうそ;Histone Deacetylase(HDAC);EC 3.5.1)とはクロマチン構造において主要な構成因子であるヒストンの脱アセチル化を行う酵素である。遺伝子の転写制御において重要な役割を果たしている。ヒトでは、現在HDAC1-11,SirT1-7の18種類が同定されている。.

新しい!!: DNA修復とヒストン脱アセチル化酵素 · 続きを見る »

ピリミジン塩基

ピリミジン塩基(ピリミジンえんき、pyrimidine base)とは核酸の構成要素のうちピリミジン核を基本骨格とする塩基性物質である。核酸略号はPyr。細胞への紫外線照射によりピリミジン塩基の一部は二量体となり,遺伝子傷害の原因となる。.

新しい!!: DNA修復とピリミジン塩基 · 続きを見る »

テロメラーゼ

テロメラーゼによるテロメア配列付加の模式図:上)ヒトのテロメラーゼは染色体末端DNAの 3'側に6塩基配列 TTAGGGを付加する。下)付加された配列をテンプレート(鋳型)としてDNAポリメラーゼが相補鎖を合成する。 末端複製問題とテロメア:左)DNAはDNAポリメラーゼ(青丸)によって複製されるが、最末端のプライマー(赤線)部分は複製されない。このため、複製のたびにDNAは短縮する。これが「末端複製問題」である。右)生殖細胞やガン細胞ではテロメラーゼによって末端部分の複製が行われる。テロメラーゼ活性がない体細胞では分裂ごとに短縮がおこり、一定以上短くなると分裂を停止し細胞老化が起こる。 テロメラーゼ (telomerase) は、真核生物の染色体末端(テロメア)の特異的反復配列を伸長させる酵素。テロメア伸長のテンプレート(鋳型)となるRNA構成要素と逆転写酵素活性を持つ触媒サブユニットおよびその他の制御サブユニットによって構成されている Jabion Jabion Jabion 。 テロメラーゼ活性が低い細胞は、一般に細胞分裂ごとにテロメアの短縮が進み、やがてヘイフリック限界と呼ばれる細胞分裂の停止が起きる。テロメラーゼは、ヒトでは生殖細胞・幹細胞・ガン細胞などでの活性が認められ、それらの細胞が分裂を継続できる性質に関与している。このことから、活性を抑制することによるガン治療、および活性を高めることによる細胞分裂寿命の延長、その両面から注目を浴びている。 酵素によりテロメアが伸長されることは、1973年にアレクセイ・オロヴニコフによって最初に予測された。彼はまた細胞老化に関するテロメア仮説およびガンとテロメアの関連について示唆を行った。 1985年にカリフォルニア大学のキャロル・W・グライダーとエリザベス・H・ブラックバーンは、テトラヒメナからこの酵素を単離したことを公表した。グライダーとブラックバーンはジャック・W・ショスタクと共に、テロメアとテロメラーゼに関する一連の研究で、2009年ノーベル生理学・医学賞を受賞した。.

新しい!!: DNA修復とテロメラーゼ · 続きを見る »

テロメア

テロメア (telomere) は真核生物の染色体の末端部にある構造。染色体末端を保護する役目をもつ。telomere はギリシア語で「末端」を意味する τέλος (telos) と「部分」を意味する μέρος (meros) から作られた語である。末端小粒(まったんしょうりゅう)とも訳される。 染色体(左)とテロメア(右・拡大):詳細は本文を参照.

新しい!!: DNA修復とテロメア · 続きを見る »

デイノコッカス・ラディオデュランス

デイノコッカス・ラディオデュランス(Deinococcus radiodurans、「放射線に耐える奇妙な果実」という意味、かつては Micrococcus radiodurans と呼ばれていた)はグラム陽性細菌(グラム染色自体は陽性だが系統、構造的には陰性菌に近い)に分類される極限環境微生物で、放射線耐性生物としては最も広く知られ、研究が進んでいる生物である。 10Gyの放射線でヒトを、60Gyの放射線で大腸菌を殺すことができるが、D.

新しい!!: DNA修復とデイノコッカス・ラディオデュランス · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: DNA修復とデオキシリボ核酸 · 続きを見る »

フラボタンパク質

フラボタンパク質(Flavoprotein)は、補欠分子族としてリボフラビン誘導体のフラビンモノヌクレオチド(FMN)またはフラビンアデニンジヌクレオチド(FAD)を含むタンパク質の総称である。たとえば生物発光、酸化ストレスに関わるラジカルの除去、光合成、DNA修復、アポトーシスのような、非常に多くの生化学反応に関わっている。.

新しい!!: DNA修復とフラボタンパク質 · 続きを見る »

フレームシフト突然変異

フレームシフト突然変異(フレームシフトとつぜんへんい)とは、塩基の欠失または挿入が起こり、三つ組みの読み枠がずれた時に生じる突然変異である。これは、塩基対置換よりも影響が非常に大きい。というのも、大幅に遺伝暗号がずれ、アミノ酸が変わるだけでなく、終止コドンなどもずれてしまうためである。本来止まるべき終止コドンを読めなくなったり、より手前で終止コドンが現れたりする(フレームシフトの大半はこれ)ためである。以下の例で変異を考える。 このように変異箇所から後の配列は大幅に異なる。このように、終止コドンが最後の辺りで無くなると、リボソームはポリA配列を読む羽目になって立ち往生する。だから真核細胞においては、終止コドンがないための分解 nonstop mediated decayによってmRNAは翻訳完了前に分解されてしまう。 3個の塩基がバラバラに導入された場合は、1個や2個の場合と比べ、影響は小さくなる。3カ所にAが入ることで考える。 となって、3つ目に新たに挿入されたA以降のリーディングフレームが元通りとなり、影響は小さくなる。ただし、3つ組で入る場合はフレームがずれないので、単に挿入と言いフレームシフトとは言わない。 次に、フレームシフトによって終止コドンが来る場合を以下の例で説明する。大半のフレームシフト変異はこれに属する。 本来作られるべきポリペプチドよりも、大幅に小さいものが出来上がる。このような場合、真核生物においてはタンパク質は機能しないので、ナンセンス変異依存mRNA分解機構 nonsense mediated mRNA decayによって細胞内で破壊されることになる。.

新しい!!: DNA修復とフレームシフト突然変異 · 続きを見る »

ファンコーニ貧血

ファンコーニ貧血(ファンコーニひんけつ、Fanconi anemia、FA) は遺伝子疾患のひとつであり、350,000人に1人の割合で生じるが、アシュケナージユダヤ人や南アフリカのアフリカーナーではより高い確率で発症する。 ファンコーニ貧血は、DNA修復に関与する一連のタンパク質に遺伝的な欠陥が生じたために起きる疾患である。そのため、ファンコーニ貧血の患者は大部分が癌(おもに急性骨髄性白血病)に罹患したり、90%が40歳までに骨髄の機能不全(血球細胞を作れない)を示したりする。ファンコーニ貧血の患者の60-75%が先天性疾患を有しており、その主なものには低身長、皮膚・腕・頭部・眼・腎臓・耳の異常所見、発達障害がある。また75%の患者には何らかの内分泌障害を有し、重篤度は患者により異なる。平均死亡年齢は2000年の時点で30歳であった。 アンドロゲンや造血細胞増殖因子を用いた治療法で骨髄機能不全を一時的に補うことができるが、長期治療は、もしドナーが見つかるならば造血幹細胞移植(骨髄移植)である。 DNA修復における遺伝的欠陥のため、ファンコーニ貧血の患者から採った細胞は、マイトマイシンCのようなDNA架橋結合による抗がん剤に対して敏感である。 ファンコーニ貧血の名称は、この疾患を初めて記述したスイスの小児科医グイドー・ファンコーニ (en:Guido Fanconi)に由来する。同様にファンコーニの名から付けられた疾患に腎疾患のファンコーニ症候群があるが、こちらと混同してはならない。.

新しい!!: DNA修復とファンコーニ貧血 · 続きを見る »

フォトリアーゼ

フォトリアーゼ(Photolyase)(EC 4.1.99.3)は、紫外線に曝露されたことによって起こるピリミジン二量体の生成によるDNA損傷を修復するDNA修復酵素である。この酵素のメカニズムとして、可視光、特に可視光スペクトルの端の紫色や青色の光を優先的に必要としており、光回復酵素として知られている。.

新しい!!: DNA修復とフォトリアーゼ · 続きを見る »

分子標的治療

分子標的治療(ぶんしひょうてきちりょう、molecularly-targeted therapy)とは、ある特定の分子を標的として、その機能を制御することにより治療する療法。 正常な体と病気の体の違いあるいは癌細胞と正常細胞の違いをゲノムレベル・分子レベルで解明し、がんの増殖や転移に必要な分子を特異的に抑えたり関節リウマチなどの炎症性疾患で炎症に関わる分子を特異的に抑えたりすることで治療する。従来の多くの薬剤もその作用機序を探ると何らかの標的分子を持つが、分子標的治療は創薬や治療法設計の段階から分子レベルの標的を定めている点で異なる。また、この分子標的治療に使用する医薬品を分子標的治療薬と呼ぶ。 以下本項目では、分子標的薬の多くががん治療薬であることから、狭義の分子標的治療であるがん治療への分子標的治療薬を中心に記述する(自己免疫疾患についても触れる)。.

新しい!!: DNA修復と分子標的治療 · 続きを見る »

切断 (DNA)

切断 (せつだん、英語:cut、scission) はDNAの切断の型のひとつで、DNA二本鎖が二本とも切り離されることである。.

新しい!!: DNA修復と切断 (DNA) · 続きを見る »

アルバート・ラスカー基礎医学研究賞

アルバート・ラスカー基礎医学研究賞(アルバート・ラスカーきそいがくけんきゅうしょう)は、アルバート・ラスカー医学研究賞の一部門。ラスカー財団によって授与される国際的な医学賞の一つで、障害や死の原因を取り除くための技術・情報・概念をもたらす基礎的な発見を成し遂げた科学者を対象とする。 ノーベル生理学・医学賞の受賞者がそれに先行して本賞を受賞している場合が多く、その割合は約50%に達する。.

新しい!!: DNA修復とアルバート・ラスカー基礎医学研究賞 · 続きを見る »

アジズ・サンジャル

アジズ・サンジャル(Aziz Sancar, 1946年9月8日 - )は、トルコ・アメリカ国籍の生物学者である 。専門は生化学と分子生物学で、特に哺乳類のDNA修復、細胞周期チェックポイント、体内時計を研究分野とする。ノースカロライナ大学チャペルヒル校教授。 ヌクレオチド除去修復の研究が評価され、「DNA修復機構の解明」により、トマス・リンダール、ポール・モドリッチと共に、2015年ノーベル化学賞を受賞した。 科学技術分野でのトルコ人初のノーベル賞受賞者である。 また、彼はアメリカでのトルコ人学生の支援と、トルコ文化をプロモーションする非営利団体「the Aziz and Gwen Sancar Foundation」の共同創設者である。.

新しい!!: DNA修復とアジズ・サンジャル · 続きを見る »

イルジン

単離されたイルジン類の構造式 イルジン(illudin)類は、一部のキノコによって生産される抗腫瘍、抗菌活性を持つセスキテルペン類である。単離された形で、イルジン類は骨髄性白血病やその他のがん細胞に対して選択的毒性を示す。アメリカ合衆国原産の毒キノコである Omphalotus illudens から単離・命名された。 1963年、日本の中西香爾らによりツキヨタケから発見された際には当時の学名であるLampteromyces japonicusにちなみランプテロール(Lampterol)と命名されたが、後の研究 により、イルジンと同一物質であることが明らかにされた。日本では一時ルナマイシン(Lunamycine)の名も用いられた。 イルジンは毒性が高く、天然型では治療的価値はほとんどない。イルジンは''O. olearius''、''O. illudens''、''O. nidiformis''、ツキヨタケ(O.

新しい!!: DNA修復とイルジン · 続きを見る »

インテイン

インテインを含むタンパク質スプライシングの機構。N-エクステインは赤色、インテインは黒色、C-エクステインは青色で示されている。Xは酸素原子あるいは硫黄原子を表わす。 インテイン(Intein)とはタンパク質分子の一部分で、自動的に切除され、残った部分(エクステイン)がペプチド結合で再結合される(「タンパク質スプライシング」)ようなものをいう。"タンパク質イントロンprotein intron"という呼び方もされる(遺伝子中のイントロンではない)。報告されているインテインのほとんどはエンドヌクレアーゼ(ホーミングエンドヌクレアーゼHoming endonucleaseと呼ばれる)のドメインを含み、これはインテインの伝播に関わっている。実際多くの遺伝子がインテインをコードする部分を含んでいるがそれらは互いに関係なく挿入位置も異なる。このような理由からインテイン(正確にいえば遺伝子のインテインをコードする部分)は利己的遺伝要素(あるいは寄生的遺伝要素)とされる。インテインによるタンパク質スプライシングはmRNAが翻訳されてタンパク質になった後に起こるものである。このタンパク質前駆体は3つの部分 - N-末端側エクステイン、インテイン、C-末端側エクステイン - からなる。このスプライシングによってできたタンパク質分子もエクステイン(Extein)と呼ばれる。 最初のインテインは1987年に発見され、それ以後インテインはすべての3つの生物界(真核生物、真正細菌、古細菌)に見出されている。スプライシングのメカニズムはタンパク質を化学的に連結する化学ライゲーション法(ちょうどインテインが発見された頃開発された)に類似している。.

新しい!!: DNA修復とインテイン · 続きを見る »

ウェルナー症候群

ウェルナー症候群(ウェルナーしょうこうぐん、Werner Syndrome)は、早老症のひとつ。.

新しい!!: DNA修復とウェルナー症候群 · 続きを見る »

エピジェネティクス

ピジェネティクス()とは、一般的には「DNA塩基配列の変化を伴わない細胞分裂後も継承される遺伝子発現あるいは細胞表現型の変化を研究する学問領域」である。ただし、歴史的な用法や研究者による定義の違いもあり、その内容は必ずしも一致したものではない。 多くの生命現象に関連し、人工多能性幹細胞(iPS細胞)・胚性幹細胞(ES細胞)が多様な器官となる能力(分化能)、哺乳類クローン作成の成否と異常発生などに影響する要因(リプログラミング)、がんや遺伝子疾患の発生のメカニズム、脳機能などにもかかわっている。.

新しい!!: DNA修復とエピジェネティクス · 続きを見る »

オラパリブ

ラパリブ (Olaparib, AZD-2281, Ku-0059436) は、進行した卵巣癌への分子標的治療薬として、アストラゼネカの リムパーザ(Lynparza) が2014年12月に米国食品医薬品局(FDA)と欧州医薬品庁(EMA)から承認を得ている。日本でも2018年1月に「白金系抗悪性腫瘍剤感受性の再発卵巣癌における維持療法」を効能・効果として承認。 DNA修復に関与する酵素を阻害するである。がん抑制遺伝子の一つであるBRCA1やBRCA2の変異により 卵巣癌、乳癌、前立腺癌、膵臓癌 を引き起こすとされ、その治療に用いられる。 400mgを1日2回経口摂取する。1日の合計摂取量は800mg。1週間分となる 50mgカプセル112個入りボトル が $3,000 で販売されている。 選択的阻害剤の一種であり PARP-1 と PARP-2 への作用 IC50 はそれぞれ 5 nM と 1 nMである。400mgを1日2回摂取した時の血中濃度は Cmax ss.

新しい!!: DNA修復とオラパリブ · 続きを見る »

カルムスチン

ルムスチン(Carmustine)は別名BCNU(bis-chloroethylnitrosourea)とも呼ばれるβ-クロロ-ニトロソウレア化合物であり、アルキル化剤として癌化学療法に用いられる。日本では2012年9月に承認を取得した。 BCNUはジアルキル化剤であるので、2本のDNAを架橋固定して、DNA複製および転写を阻害する。血液脳関門を通過する。原薬は黄橙色の固体である。 商品名ギリアデル。米国ではBiCNUという商品名で、インドではCarustineという商品名で販売されているほか、欧州およびアジア諸国等29カ国で承認されている。.

新しい!!: DNA修復とカルムスチン · 続きを見る »

カロリー制限

リー制限 (Caloric restriction: CR) は、研究されている全ての生物、酵母などの単細胞生物から虫、ハエ、ネズミあるいは霊長類などの多細胞生物において、寿命の延長と老化に関連する病気の減少をもたらすことが示されている。 カロリー制限時に働く機構は、栄養、特に炭水化物の不足があるとき、細胞の代謝活性を変更する信号を受け取る、栄養に関係する多くの遺伝子と関連している。細胞は、利用可能な炭水化物の減少を感知した場合、寿命に関連する遺伝子のDAF-2、AGE-1、およびSIR-2(図、「ほとんどの寿命に関連する遺伝子がDNA損傷の頻度に影響する」を参照)を発現させる。なぜ栄養の不足が、細胞中でのDNA修復の増加した状態を引き起こして寿命の延長を示す事と、進化において保存された細胞休眠 (cellular hibernation) の機構とに関連するのか、その理由は良く分からないが、本質的には、これらはいずれもより好ましい条件が訪れるまで細胞が休眠状態を維持することを可能にする。休眠状態の間、細胞は新陳代謝の標準とする速度を減少させ、同時に、ゲノムの不安定性を減少させなければならないが、ここに示された機構はこれらを可能にする方法の一つである。したがって、細胞の老化速度は変化しやすく、栄養の利用可能性といった環境要因もDNA修復速度を変更させることでこれに影響を与える。 DNAと結び付いているヒストンでは、N末端のリシン残基がアセチル化、脱アセチル化され、これが遺伝子発現の制御に関わっている。ヒストンが多数アセチル化されている染色体領域は、遺伝子の転写が活発に行われており、ヒストンのアセチル化は遺伝子の発現を活性化させ、脱アセチル化はヒストンとDNAの親和力を強め遺伝子の発現を抑制しDNAを安定化していると考えられている。これらの反応はヒストンアセチルトランスフェラーゼ(HAt)、ヒストン脱アセチル化酵素.

新しい!!: DNA修復とカロリー制限 · 続きを見る »

カエル卵抽出液

ル卵抽出液(かえるらんちゅうしゅつえき:frog egg extract)は、カエル卵を遠心分離して得られる抽出物。細胞生物学の研究において、細胞周期の進行やゲノムDNAの複製と分配の分子メカニズムの解析に適した無細胞系として用いられている。.

新しい!!: DNA修復とカエル卵抽出液 · 続きを見る »

クリプトクロム

リプトクロム(Cryptochrome, Cry)は青色光受容体タンパク質である。 ギリシャ語で「隠れた色素」(κρυπτοσ χρομοσ) という意味であり、元来は植物にあると想定された青色光受容体を指した。現在では特定の一群のタンパク質の名称であり、植物にはもう一種の青色光受容体であるフォトトロピンも見つかっている。クリプトクロムは緑藻から高等植物までにあり、さらに動物などにもよく似たタンパク質があることが明らかになっている。 クリプトクロムはフラビンタンパク質で、植物では光に基づく花芽形成、伸長、概日リズムなどの調節に関与している。青色光は光屈性にも関わっているが、これはクリプトクロムでなくフォトトロピンによることがわかっている。植物にはこのほかに赤色・近赤外光受容体フィトクロムがある。多くの植物ではクリプトクロムには2種類あり、CRY1およびCRY2と呼ばれている。 クリプトクロムは、光をエネルギー源としてDNA修復を行う細菌の酵素であるフォトリアーゼに構造が似ており(酵素活性は失っている)、進化的にはこれに由来すると考えられている。色素団としてプテリンとフラビンの2つを含んでいる。プテリンが光子を吸収し、これにより電子が放出され、この電子はフラビンに吸収される。これによりクリプトクロム分子はリン酸化を受け、さらにシグナル伝達の引き金を引くものと考えられているが、詳細は不明である。 クリプトクロムは動物(脊椎動物、昆虫、サンゴなど)やシアノバクテリア(藍藻)にも見つかっているが、これらは植物のものとは別系統とされる()。 動物では概日リズムに働く2タイプのCryがある。ほ乳類のCryは光受容能力はなく、CLOCK/BMALの抑制に働く。キイロショウジョウバエのCRYは青い光を受容して概日リズムをリセットするが、抑制能力はない。ただし蝶, ミツバチ, ハマダラカなど他の昆虫ではほ乳類型とショウジョウバエ型の両方のCryを持っている。.

新しい!!: DNA修復とクリプトクロム · 続きを見る »

ゲノム編集

ノム編集(ゲノムへんしゅう、)とは、部位特異的なヌクレアーゼを利用して、思い通りに標的遺伝子を改変する技術である。ヌクレアーゼとしては、2005年以降に開発・発見された、ZFN(ズィーエフエヌ、または、ジンクフィンガーヌクレアーゼ)、TALEN(タレン)、CRISPR/Cas9(クリスパー・キャスナイン)を中心としている。従来の遺伝子工学、遺伝子治療と比較して、非常に応用範囲が広い。.

新しい!!: DNA修復とゲノム編集 · 続きを見る »

コメットアッセイ

メットアッセイ(comet assay)は変異原性試験の一種。電気泳動の原理を利用し真核生物の細胞または細胞核におけるDNAの切断を検出する方法で、単細胞ゲル電気泳動法(Single cell gel electrophoresis;SCGE)とも呼ばれる。DNAの損傷から修復の過程を指標として変異原性(遺伝毒性)を調べる方法としてよく用いられる。またアポトーシスの検出にも用いられる。.

新しい!!: DNA修復とコメットアッセイ · 続きを見る »

コンデンシン

ンデンシン(condensin)は、分裂期の染色体凝縮(chromosome condensation; 図1)と分離に中心的な役割を果たすタンパク質複合体である 。細胞分裂期の染色体を構成する主要なタンパク質として、アフリカツメガエル (Xenopus leavis) の卵抽出液(カエル卵抽出液)から初めて同定された。.

新しい!!: DNA修復とコンデンシン · 続きを見る »

コヒーシン

ヒーシン(こひーしん:cohesin)は、姉妹染色分体の接着(複製された染色体を娘細胞に均等に分離するために必須な過程; sister chromatid cohesion)に中心的な役割を果たすタンパク質複合体である 。.

新しい!!: DNA修復とコヒーシン · 続きを見る »

コケイン症候群

イン症候群(Cockayne Syndrome)またはウェーバー・コケイン症候群(Weber-Cockayne Syndrome)、ニール・ディングウォール症候群(Neil-Dingwall Syndrome)とは、DNA修復機構の異常により生じる常染色体劣性遺伝病のこと南山堂医学大辞典 ISBN 978-4525010294。.

新しい!!: DNA修復とコケイン症候群 · 続きを見る »

シクロヘキシミド

ヘキシミドは細菌の1種Streptomyces griseusによって作られる真核生物のタンパク質合成の阻害剤である。シクロヘキシミドはタンパク質合成の転位過程(リボソームに結合する2つのtRNA分子とmRNAの移動)に干渉することでその効果を示し、翻訳を阻害する。シクロヘキシミドは、in vitro(すなわち生体外)で研究される真核生物細胞におけるタンパク質合成を阻害する用途で生化学研究に広く用いられている。シクロヘキシミドは高価ではなく、迅速に作用し、単純に培地から除くことでその効果を失くすことができる。 DNA損傷、催奇性、および他の生殖への影響(先天性異常と精子への毒性)を含む毒性の強い副作用のため、シクロヘキシミドは一般的にはin vitroの研究にのみ使用され、ヒトの治療薬としては適切でない。農業においては抗真菌剤として使用されてきているが、この種の利用は、健康へのリスクに対する理解が進むにつれて減少しつつある。毒物及び劇物取締法により劇物に指定されている 。 シクロヘキシミドはアルカリ(pH > 7)で分解する。使用した場所の表面や容器からシクロヘキシミドを除くには、石鹸のような毒性のないアルカリ溶液で処理すればよい。 シクロヘキシミドは真核生物でのみタンパク質合成を効果的に阻害するので、ミトコンドリアで翻訳されるタンパク質と細胞質で翻訳されるタンパク質を区別するために用いられることがある。核から輸送され、細胞質または小胞体で翻訳されるべきmRNAは、シクロヘキシミドの存在下では翻訳されない。反対に、ミトコンドリアのリボソームを使った翻訳はシクロヘキシミドの影響を受けず、ミトコンドリアの遺伝子は発現し続ける。.

新しい!!: DNA修復とシクロヘキシミド · 続きを見る »

ジンクフィンガーヌクレアーゼ

ンクフィンガーヌクレアーゼ (Zinc Finger Nucleases, ZFN, ZFNs) は、ジンクフィンガードメインとDNA切断ドメインから成る人工制限酵素である。ジンクフィンガー・ヌクレアーゼ、亜鉛フィンガーヌクレアーゼとも表記される。ジンクフィンガードメインは任意のDNA塩基配列を認識するように改変可能で、これによってジンクフィンガーヌクレアーゼが複雑なゲノム中の単一の配列を標的とすることが可能となる。内因性のDNA修復機構を利用することで、ZFNsはさまざまなモデル生物においてゲノム編集 (genome editing) を可能にする。.

新しい!!: DNA修復とジンクフィンガーヌクレアーゼ · 続きを見る »

ジェミニウイルス科

ェミニウイルス科(Geminiviridae)は植物に感染するウイルスのグループで、一本鎖の環状DNAをゲノムとして持つ。ビリオンは2つの正二十面体がつながった特異な形をしており、「双子」の意味でジェミニと名付けられた。.

新しい!!: DNA修復とジェミニウイルス科 · 続きを見る »

サプレッサ突然変異

プレッサー突然変異(サプレッサーとつぜんへんい)とは、1か所の突然変異の効果が第2の突然変異によって、遮蔽される遺伝子変異。 例えば、物質Aの産生に関する酵素の一つが不活性化されたとすると、その後のサプレッサ変異で,再び活性をもつこの酵素の合成回復させ、物質Aが産生出来るようにする。サプレッサ突然変異は2つに分類することができる。.

新しい!!: DNA修復とサプレッサ突然変異 · 続きを見る »

六価クロム

六価クロム(ろっかクロム、)は、クロムの化合物のうち、酸化数が +6 の Cr(VI) を含むものの総称である。.

新しい!!: DNA修復と六価クロム · 続きを見る »

突然変異

突然変異(とつぜんへんい)とは、生物やウイルスがもつ遺伝物質の質的・量的変化。および、その変化によって生じる状態。 核・ミトコンドリア・葉緑体において、DNA、あるいはRNA上の塩基配列に物理的変化が生じることを遺伝子突然変異という。染色体の数や構造に変化が生じることを染色体突然変異という。 細胞や個体のレベルでは、突然変異により表現型が変化する場合があるが、必ずしも常に表現型に変化が現れるわけではない。 また、多細胞生物の場合、突然変異は生殖細胞で発生しなければ、次世代には遺伝しない。 表現型に変異が生じた細胞または個体は突然変異体(ミュータント)と呼ばれ、変異を起こす物理的・化学的な要因は変異原(ミュータゲン)という。 個体レベルでは、発ガンや機能不全などの原因となる場合がある。しかし、集団レベルでみれば、突然変異によって新しい機能をもった個体が生み出されるので、進化の原動力ともいえる。 英語やドイツ語ではそれぞれミューテーション、ムタチオン、と呼び、この語は「変化」を意味するラテン語に由来する。.

新しい!!: DNA修復と突然変異 · 続きを見る »

細胞周期

細胞周期(さいぼうしゅうき; cell cycle)は、ひとつの細胞が二つの娘細胞を生み出す過程で起こる一連の事象、およびその周期のことをいう。細胞周期の代表的な事象として、ゲノムDNAの複製と分配、それに引き続く細胞質分裂がある。.

新しい!!: DNA修復と細胞周期 · 続きを見る »

細胞周期チェックポイント

細胞周期チェックポイント(さいぼうしゅうきチェックポイント)とは、細胞が正しく細胞周期を進行させているかどうかを監視(チェック)し、異常や不具合がある場合には細胞周期進行を停止(もしくは減速)させる制御機構のことである。細胞自体がこの制御機構を備えている。一回の細胞分裂の周期の中に、複数のチェックポイントが存在することが知られており、これまでにG1/Sチェックポイント、S期チェックポイント、G2/Mチェックポイント、M期チェックポイントの4つが比較的よく解析されている。この機構は正確な遺伝情報を娘細胞、ひいては子孫に伝達するための、生命にとって根源的な役割を果たしていると考えられており、この機構の異常はヒトなどのがん発生の主要な原因のひとつといわれる。その基本概念は、1988年、リーランド・ハートウェルらにより提出された。 500px.

新しい!!: DNA修復と細胞周期チェックポイント · 続きを見る »

細胞老化

細胞老化(さいぼうろうか)とは細胞が分裂を停止し、増殖できなくなった状態が不可逆的に引き起こされること。ゲノムの不安定化などによって引き起こされ、細胞ががん化することを抑制する防御反応であると考えられている。個体の老化になぞらえて名付けられたが、個体老化と細胞老化の直接的な関連については議論が続いている。 ヒトの初代培養細胞に「ヘイフリック限界」と呼ばれる分裂回数の制限があることが発見され、細胞老化は狭義にはこの限界に達した細胞の状態を指した。後の研究で、生体内 (in vivo) の細胞でも、自己防御のための積極的な細胞老化が起こることがわかってきた。この現象は未成熟細胞老化と名付けられたが、人工的な条件下 (in vitro) で起こるヘイフリック限界よりも、生物学的な意義が認められ、「細胞老化」が未成熟細胞老化を指す場合もある。 未成熟細胞老化はさまざまな生物学的ストレスにより引き起こされる。例えばテロメアが短縮すると染色体が不安定になり、がん化の原因となる。このため、テロメアの長さを監視する機構があり、一定以上短くなると一時的な細胞老化が誘導される。またDNAの切断が生じた場合も、細胞周期を停止させ細胞分裂が起こらないようにし、その間に染色体の修復を行う。それでも復旧できなかった場合は不可逆的な細胞老化状態に入るか、アポトーシスによって排除されるが、これらの機構を逃れた細胞はがん化する。このように細胞老化の多くの原因はDNA損傷によって誘導される。DNA損傷は放射線や変異原、酸化ストレスによって引き起こされる。.

新しい!!: DNA修復と細胞老化 · 続きを見る »

点突然変異

点突然変異あるいは1塩基置換は、遺伝物質DNAあるいはRNAの1ヌクレオチド塩基を別のヌクレオチド塩基に置換わる、つまりDNAやRNAのG、A、T、Cのうち一つ(一塩基)が別の塩基に置き換わってしまう突然変異のこと。 1塩基の欠失あるいは付加(挿入)はコドン(codon)の読み枠をそれ以降のDNAやRNA上で変更するフレームシフト変異を起こす、この場合、合成されたタンパク質はそのヌクレオチド上で異なる読み枠でトリプレットが読まれるため、もっと深刻な帰結をもたらす。これはフレームシフト突然変異と呼ばれる。.

新しい!!: DNA修復と点突然変異 · 続きを見る »

生物学における不老不死

生物学における不老不死(せいぶつがくにおけるふろうふし)とは、通常では時間の経過に伴って発生する老化が発生せず、もしくは一時的に発生しても若返ることによって、老衰による死から免れた状態のこと。 生物学的には、いかなる外傷・疾病・毒物などによっても死ぬことのない状態を表す不死身は成り立ち得ないため、不老不死のうち、「不老」に当たる概念を指して不老不死と呼ばれる。老衰による死を免れた個体や細胞の形質を指して「不死化」と呼ばれる。.

新しい!!: DNA修復と生物学における不老不死 · 続きを見る »

生物学に関する記事の一覧

---- 生物学に関する記事の一覧は、生物学と関係のある記事のリストである。ただし生物学者は生物学者の一覧で扱う。また生物の名前は生物学の研究材料としてある程度有名なもののみ加える。 このリストは必ずしも完全ではなく、本来ここにあるべきなのに載せられていないものや、ふさわしくないのに載せられているものがあれば、適時変更してほしい。また、Portal:生物学の新着項目で取り上げたものはいずれこのリストに追加される。 「⇒」はリダイレクトを、(aimai) は曖昧さ回避のページを示す。並べ方は例えば「バージェス動物群」なら「はしえすとうふつくん」となっている。 リンク先の更新を参照することで、このページからリンクしている記事に加えられた最近の変更を見ることが出来る。Portal:生物学、:Category:生物学も参照のこと。.

新しい!!: DNA修復と生物学に関する記事の一覧 · 続きを見る »

DNAミスマッチ修復

DNAミスマッチ修復 (DNAミスマッチしゅうふく、mismatch repair) は、DNA複製や遺伝的組換え時に生じる核酸塩基のミスマッチ(誤対合や塩基の誤挿入、欠失など)を校正するDNA修復システムの1つである。 DNAポリメラーゼには自己校正機能があるが、それでも1,000万回に1回、107塩基対に1個は間違いを犯す。そこでミスマッチ修復系が、ミスマッチの校正を行う。その際、新生鎖と鋳型鎖を取り違えてしまうと、突然変異の原因になるため、新生鎖と鋳型鎖の区別をする仕組みが存在する。この校正により更に99%の誤りを校正できる。.

新しい!!: DNA修復とDNAミスマッチ修復 · 続きを見る »

DNAポリメラーゼ

DNA ポリメラーゼ (DNA polymerase; -ポリメレース) は1本鎖の核酸を鋳型として、それに相補的な塩基配列を持つ DNA 鎖を合成する酵素の総称。一部のウイルスを除くすべての生物に幅広く存在する。DNA を鋳型としてDNA を合成する DNA 依存性 DNA ポリメラーゼ(EC 2.7.7.7)と、RNA を鋳型として DNA を合成する RNA 依存性 DNA ポリメラーゼ(EC 2.7.7.49)の、2つのタイプに分けられる。前者はDNA複製やDNA修復において中核的な役割を担う酵素である。一方後者はセントラルドグマの範疇から逸脱する位置にある酵素で、逆転写酵素やテロメラーゼを含む。.

新しい!!: DNA修復とDNAポリメラーゼ · 続きを見る »

DNAメチル化

ピジェネティックな遺伝子制御で重要な役割を果たしている。 DNAメチル化(ディーエヌエイメチルか)とは、DNA中によく見られるCpG アイランドという配列の部分などで炭素原子にメチル基が付加する化学反応。エピジェネティクスに深く関わり、複雑な生物の体を正確に形づくるために必須の仕組みであると考えられている。がんにも関わっている。.

新しい!!: DNA修復とDNAメチル化 · 続きを見る »

DNAリガーゼ

DNAリガーゼ(ディーエヌエーリガーゼ、)は、DNA鎖の末端同士をリン酸ジエステル結合でつなぐ酵素である。生体内では主としてDNA複製とDNA修復に寄与している。一方、遺伝子工学で組換えDNAを作るために頻繁に利用されている。EC番号は(基質ATP)または(基質NAD+)。英語での発音に倣ってDNAライゲースともいい、ポリデオキシリボヌクレオチドシンターゼ、ポリヌクレオチドリガーゼなどとも呼ばれる。.

新しい!!: DNA修復とDNAリガーゼ · 続きを見る »

DNAトポイソメラーゼ

DNAトポイソメラーゼ(DNA topoisomerases)とは、2本鎖DNAの一方または両方を切断し再結合する酵素の総称である。 環状の2重鎖DNAでは、2本の鎖は位相幾何学(トポロジー)的には結び目があるのと等価であり、ねじれ数の異なるDNA、つまりトポアイソマー(トポロジーの異なる異性体)は、DNA鎖を切らない限り互いに変換できない。トポイソメラーゼはこの変換(topoisomerization)を触媒する異性化酵素という意味で命名された。抗がん剤や抗生物質のターゲットとしても知られる。.

新しい!!: DNA修復とDNAトポイソメラーゼ · 続きを見る »

DNA複製

'''図1 DNA複製の模式図'''.青色の二本の帯が鋳型鎖(Template Strands)。2本が平行に並んでいる上部は二重らせん、斜めになって非平行になっている下部は二重らせんが解けて一本鎖となった領域である。上部と下部の境目が複製フォーク (Replication Fork) であり、二重らせん領域は時間とともに解けられていくので複製フォークは図の上側へと進行していく。下部の2本の一本鎖はそれぞれ異なる様式でDNAポリメラーゼ(DNA Polymerase、緑色)により複製され、上から見て5'から3'の左の鋳型鎖ではDNAポリメラーゼが複製フォークと同じ方向に進行し、一本のリーディング鎖 (Leading Strand) が合成される。上から見て3'から5'の右の鋳型鎖ではDNAポリメラーゼが複製フォークと逆の方向に進み、途切れ途切れにいくつもの岡崎フラグメント (Okazaki Fragments) が合成されていく。伸長が終わった岡崎フラグメントはDNAリガーゼ(DNA Ligase、ピンク)によりつなぎ合わせられ、ラギング鎖 (Lagging Strand) となる。 DNA複製(ディーエヌエイふくせい、DNA replication)は、細胞分裂における核分裂の前に、DNAが複製されてその数が2倍となる過程である。生物学ではしばしば複製 (replication) と略される。セントラルドグマの一員とされる。複製される一本鎖DNAを親鎖 (parent strand)、DNA複製によって新しく合成された一本鎖DNAを娘鎖 (daughter strand) という。また、DNA複製により生じた染色体の個々を姉妹染色分体 (sister chromatid) という。.

新しい!!: DNA修復とDNA複製 · 続きを見る »

適応的突然変異

適応的突然変異(てきおうてきとつぜんへんい)Adaptive mutationとは、周りの環境に適応していく突然変異。 変異は無作為的に発生し、その中から、環境に適したものが生き残り、淘汰されて行くと考えられていた。 しかしこの適応的変異の場合は、作為的な変異となる。例えば、生物が飢餓状態におかれた場合、それまで利用できなかったものを栄養物として利用できるようになる。これは「獲得形質の遺伝」ということができ、ダーウィニズムに対する重大な反証となる可能性がある。 これは、1988年にケアンズらの研究によって最初に示された。Lacにフレームシフト突然変異を起こしたE.Coli(大腸菌)を用いた。これを、炭素源が乳糖のみである培地で培養した。もう一度変異が起こり、乳糖を炭素源として利用できるようになる場合だけ、増殖できる。つまり、ナンセンス突然変異の逆の効果によって、Lac分解酵素が合成できるようになる場合においてのみ増殖できるということである。この効果が予測を上回って好発し、また、E.Coliの他の遺伝子領域と比較しても好発していることが示された。 しかしこの結論は、現在では誤りであることがHendrickson Hら によって示されている。導入された遺伝子は、プラスミド上にあり、染色体上ではない。このため、大腸菌は、乳糖がなくて、染色体を増幅出来ないものの、プラスミドを増幅することが出来る。このため、プラスミド上では、突然変異が高確率で起こる。Lac突然変異は、不安定ではあるものの、Lacを利用できるようになった大腸菌は、そうでない大腸菌と違い、成長をすることが出来る。この間に、安定した変異が生じ、自然選択的にLac分解能を獲得した大腸菌が高頻度で生じることとなる。.

新しい!!: DNA修復と適応的突然変異 · 続きを見る »

非相同末端結合

非相同末端結合(ひそうどうまったんけつごう、non-homologous end joining (NHEJ)) とは、DNA二重鎖切断のDNA修復メカニズムの一つである。DNA末端を直接繋ぎ合わせるため、相同組換えと異なり姉妹染色分体を必要とせず、すべての細胞周期内において機能する一方、DNA末端の接合部において変異が起こりやすいLieber, M. R. (2010). The mechanism of Double-Strand DNA break repair by the nonhomologous DNA End-Joining pathway. Annual Review of Biochemistry, 79 (1), 181-211. URL http://dx.doi.org/10.1146/annurev.biochem.052308.093131。DNA破損で生じた二重鎖切断の修復のほか、抗体遺伝子の組換えシステムであるV(D)J組換え、クラススイッチ組換えで生じるDNA二重鎖切断の結合も行う。NHEJは典型的なものと(classical NHEJ(C-NHEJ)と、DNA末端のマイクロホモロジーを利用する代替的なもの(alternative end joining (AEJ)、backup NHEJ (B-NHEJ)もしくはmicrohomology-mediated end joining (MMEJ))に分割され、二つの経路において関係するタンパク質が異なる。.

新しい!!: DNA修復と非相同末端結合 · 続きを見る »

非表現突然変異

非表現突然変異(ひひょうげんとつぜんへんい)は、DNAの突然変異で、タンパク質のアミノ酸の配列には影響を及ぼさないものである。DNAの非コード部位(遺伝子の外側部分または、イントロンの部位)の変異、もしくはエキソンにおける最終的なアミノ酸配列には関与しない範囲での変異である。サイレント突然変異 (silent mutation) ともいう。 タンパク質の機能に影響しないので、進化的中立であるかのようにしばしば扱われる。しかしながら、多くの生命体でコドン使用の種による多様性が知られているので、コドンの使用は翻訳の安定性を目的とする自然選択であることを示唆している。よって、非表現突然変異はスプライシングや翻訳のコントロールに影響を及ぼすかもしれない。 分子クローニング実験において、目的の遺伝子に非表現突然変異を導入することは、制限酵素のために認識部位を作成、または取り除くために役に立つ。外部リンクで認識部位を作成する変異可能な目的の配列を分析することができるオンラインツールを紹介する。 最近の研究結果では、非表現突然変異は、タンパク質の構造や挙行に影響を及ぼしうる可能性を示唆している。,.

新しい!!: DNA修復と非表現突然変異 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

新しい!!: DNA修復と転写 (生物学) · 続きを見る »

近藤宗平

近藤 宗平(こんどう そうへい、1922年5月7日 - 2014年6月10日)は日本の遺伝学者、放射線ホルミシスの研究者。理学博士。.

新しい!!: DNA修復と近藤宗平 · 続きを見る »

葉圏

葉圏(ようけん、Phyllosphere)とは微生物学の専門用語の一つであり、微生物の生息地としての、植物における地面から上の部位全体である。.

新しい!!: DNA修復と葉圏 · 続きを見る »

色素

色素(しきそ、coloring matter, pigment)は、可視光の吸収あるいは放出により物体に色を与える物質の総称。 色刺激が全て可視光の吸収あるいは放出によるものとは限らず、光の干渉による構造色や真珠状光沢など、可視光の吸収あるいは放出とは異なる発色原理に依存する染料や顔料も存在する。染料や顔料の多くは色素である。応用分野では色素は染料及び顔料と峻別されず相互に換言できる場合がある。色素となる物質は無機化合物と有機化合物の双方に存在する。.

新しい!!: DNA修復と色素 · 続きを見る »

色素性乾皮症

色素性乾皮症(しきそせいかんぴしょう、xeroderma pigmentosum)は常染色体劣性遺伝性の光線過敏性皮膚疾患である。英語名の頭文字からXPと省略して呼ばれることもある。.

新しい!!: DNA修復と色素性乾皮症 · 続きを見る »

老化

老化(ろうか、ageing、aging)とは、生物学的には時間の経過とともに生物の個体に起こる変化。その中でも特に生物が死に至るまでの間に起こる機能低下やその過程を指す。 澱粉の老化は澱粉を参照のこと。.

新しい!!: DNA修復と老化 · 続きを見る »

FtsZ

FtsZは、真正細菌やユーリ古細菌などに存在する、ftsZ 遺伝子から翻訳されるタンパク質。細胞膜下に集合して環構造を形成し、その箇所が分裂時に隔壁となる。これは原核生物において、真核生物のチューブリンとホモログ(相同)である。FtsZの名称は、"Filamenting temperature-sensitive mutant Z" (フィラメント状温度感受性変異株Z)による。E. coliの分裂異常株でフィラメント状に成長するものの場合、娘細胞を分離する能力を欠くために細長く成長すると考えられている。.

新しい!!: DNA修復とFtsZ · 続きを見る »

GC含量

AT対とGC対。矢印は水素結合を指している。 GC含量(GC-content)は、DNA分子中の窒素塩基のうちグアニンとシトシンの割合である。また、この用語はDNA・RNAの特定の断片や、ゲノム全体に対しても用いられる。 AT対が2つの水素結合で結ばれているのに対し、GC対は3つの水素結合で結ばれている。GC含量の高いDNAは低いものよりも安定しているが、この安定性は水素結合によるものではなく、主にスタッキング相互作用によるものである。遺伝物質の高い耐熱性に関わらず、高いGC含量のDNAを含む細胞は自己融解を起こし、細胞の寿命自体は短い。高GC含量のDNAを持つ生物の頑健性のため、GC含量は温度適応に重要な役割を果たすと信じられてきたが、この仮説は反証された。しかし同じ研究で、高温と(rRNA・tRNAや他のncRNAのような)構造RNAのGC含量との間で強い相関が示された。近年初めて行われた、遺伝子を中心とした体系的な大規模相関分析によって、特定のゲノム部位についてのみGC含量と温度の間に相関が見られることが示された。 PCRでは、プライマーのGC含量から相補DNAのアニーリング温度が予測される。高いGC含量を持つプライマーは、高いアニーリング温度を持つことが示唆される。.

新しい!!: DNA修復とGC含量 · 続きを見る »

P53遺伝子

p53遺伝子(ピー53いでんし)とは、一つ一つの細胞内でDNA修復や細胞増殖停止、アポトーシスなどの細胞増殖サイクルの抑制を制御する機能を持ち、細胞ががん化したときアポトーシスを起こさせるとされる。この遺伝子による機能が不全となるとがんが起こると考えられている、いわゆる癌抑制遺伝子の一つ。 p53のpはタンパク質(protein)、53は分子量53,000を意味し、その遺伝子産物であるp53タンパク質(以下単にp53)は393個のアミノ酸から構成されている。この遺伝子は進化的に保存されており、昆虫や軟体動物にも存在している。ただしそれらのアミノ酸一次配列はかなり多様化している。またパラログとしてp63やp73もある。RB遺伝子とともによく知られている。 細胞が、がん化するためには複数の癌遺伝子と癌抑制遺伝子の変化が必要らしいことが分かっているが、p53遺伝子は悪性腫瘍(癌)において最も高頻度に異常が認められている。p53は、細胞の恒常性の維持やアポトーシス誘導といった重要な役割を持つことから「ゲノムの守護者 (The Guardian of the genome)」とも表現されるが、染色体構造が変化する機構と、それらの細胞内での働き、そしてそれらが生物にとってどのように大切なのかについてはよくわかっていない。.

新しい!!: DNA修復とP53遺伝子 · 続きを見る »

Period (遺伝子)

Period (per) はキイロショウジョウバエのX染色体に位置する遺伝子のひとつで、時計遺伝子として働いている。per 遺伝子の転写、また協働するPERタンパク質発現レベルのはおよそ24時間の周期を持っており、ショウジョウバエの羽化や運動性の概日リズムを司る生物時計の分子機構で、この遺伝子とタンパク質は中心的な役割を担っている。per 遺伝子の変異としては、概日リズムの周期が短くなる perS 、長くなる perL 、そして完全に狂ってしまう per0 が知られている。2017年のノーベル生理学・医学賞は、この遺伝子をクローニングしたジェフリー・ホール、マイケル・ロスバッシュ、マイケル・W・ヤングの3氏に贈られた。.

新しい!!: DNA修復とPeriod (遺伝子) · 続きを見る »

Rad51

Rad51 は、単細胞真核生物からヒトまでの知られている限りすべての真核生物に存在する、遺伝子あるいはそれにコードされるタンパク質である。DNA二重鎖切断の修復に関与する。原核生物のRecAタンパク質と配列の相同性を有する。.

新しい!!: DNA修復とRad51 · 続きを見る »

Reina (シンガーソングライター)

Reina(レイナ、1990年11月16日 - )は、日本のシンガーソングライター・タレントである。 千葉大学理学部卒、東京大学大学院理学系研究科 博士課程2年。愛知県出身。 所属事務所はアッシュプロダクション株式会社。2歳半からヴァイオリンを習い始め、プロオーケストラ「フェスティナ・レンテ合奏団」での演奏を経験する。高校2年生まで同オーケストラに所属。千葉大学理学部に進学後にシンガーソングライターとしての活動を開始。『科学と芸術は人類を救う』というテーマ・スタンスで活動している。音楽活動だけでなく、タレントとしても活動している。.

新しい!!: DNA修復とReina (シンガーソングライター) · 続きを見る »

RRM2B

RRM2B (リボヌクレオシド二リン酸レダクターゼ サブユニットM2 B、英:Ribonucleoside-diphosphate reductase subunit M2 B) はヒトのRRM2B 遺伝子がコードしている酵素である。RRM2Bタンパク質をコードしている遺伝子は、8q23.1に位置している。この遺伝子および遺伝子産物は別名MTDPS8A、MTDPS8B、p53R2でも知られている。.

新しい!!: DNA修復とRRM2B · 続きを見る »

SMCタンパク質

SMCタンパク質(えすえむしいたんぱくしつ:SMC proteins)とは、染色体の高次構造と機能の制御に関わるATPアーゼファミリー、あるいはそれに属するタンパク質の総称 。SMC は、染色体構造維持(Structural Maintenance of Chromosomes)の略。コンデンシンやコヒーシンなど巨大なタンパク質複合体のATPaseサブユニットとして働く。.

新しい!!: DNA修復とSMCタンパク質 · 続きを見る »

抗酸化物質

抗酸化剤の1つ、グルタチオンの空間充填モデル。黄色球は酸化還元活性、すなわち抗酸化作用を有する硫黄原子。そのほか、赤色、青色、白色、黒色球はそれぞれ酸素、窒素、水素、炭素原子。 抗酸化物質(こうさんかぶっしつ、antioxidant)とは、抗酸化剤とも呼ばれ、生体内、食品、日用品、工業原料において酸素が関与する有害な反応を減弱もしくは除去する物質の総称である。特に生物化学あるいは栄養学において、狭義には脂質の過酸化反応を抑制する物質を指し、広義にはさらに生体の酸化ストレスあるいは食品の変質の原因となる活性酸素種(酸素フリーラジカル、ヒドロキシルラジカル、スーパーオキシドアニオン、過酸化水素など)を捕捉することによって無害化する反応に寄与する物質を含む。この反応において、抗酸化物質自体は酸化されるため、抗酸化物質であるチオール、アスコルビン酸またはポリフェノール類は、しばしば還元剤として作用する。 抗酸化物質には、生体由来の物質もあれば、食品あるいは工業原料の添加物として合成されたものもある。抗酸化物質の利用範囲は酸素化反応の防止にとどまらず、ラジカル反応の停止や酸化還元反応一般にも利用されるため、別の用途名を持つ物も少なくない。本稿においては、好気性生物の生体内における抗酸化物質の説明を中心に、医療あるいは食品添加物としての抗酸化剤を説明する。もっぱら工業原料に使われる酸化防止剤などについては関連項目の記事を併せて参照。.

新しい!!: DNA修復と抗酸化物質 · 続きを見る »

極限環境微生物

極限環境微生物(きょくげんかんきょうびせいぶつ)は、極限環境条件でのみ増殖できる微生物の総称。なお、ここで定義される極限環境とは、ヒトあるいは人間のよく知る一般的な動植物、微生物の生育環境から逸脱するものを指す。ヒトが極限環境と定義しても、極限環境微生物にとってはむしろヒトの成育環境が「極限環境」である可能性もある。 放射線耐性菌や有機溶媒耐性菌は、これらの環境でのみ増殖できるわけではなく、むしろ通常条件の方が適しているが、極限環境微生物に含める場合が多い。.

新しい!!: DNA修復と極限環境微生物 · 続きを見る »

毛細血管拡張性運動失調症

毛細血管拡張性運動失調症(もうさいけっかんかくちょうせいうんどうしっちょうしょう, ataxia telangiectasia; A-T, ルイ=バー症候群; Louis-Bar syndrome)とは、DNA修復機構の異常により生じる神経系、免疫系などの多系統の障害を呈する常染色体劣性遺伝の疾患である南山堂医学大辞典 ISBN 978-4525010294。.

新しい!!: DNA修復と毛細血管拡張性運動失調症 · 続きを見る »

活性化誘導シチジンデアミナーゼ

活性化誘導シチジンデアミナーゼ(かっせいかゆうどうシチジンデアミナーゼ、Activation-Induced (Cytidine) Deaminase、AID)は、DNA中のシチジン基からアミノ基を取り除く(脱アミノ)、24 kDaの酵素である。 AIDは現在、二次抗体多様化のマスター制御因子であると考えられている。AIDがその開始に関与しているのは、3つに分かれた免疫グロブリン(Ig)多様化プロセス、体細胞超変異(SHM)、クラススイッチ組換え(CSR)、遺伝子変換(GC)である。 AIDは一本鎖DNA上でアクティブになることがin vitroで示されており、また、その脱アミノ活性を発揮するには活性転写を必要とすることが示されている。 シス因子の関与は疑われており、AID活性は、AID活性への関与が知られる他のゲノム領域よりも免疫グロブリン"可変"領域中で数段強くなっている。これは、人工的なレポーター遺伝子構造とゲノムに統合されてきた導入遺伝子(トランスジーン)からも真である。.

新しい!!: DNA修復と活性化誘導シチジンデアミナーゼ · 続きを見る »

活性酸素

活性酸素(かっせいさんそ、Reactive Oxygen Species、ROS)は、大気中に含まれる酸素分子がより反応性の高い化合物に変化したものの総称である吉川敏一,河野雅弘,野原一子『活性酸素・フリーラジカルのすべて』(丸善 2000年)p.13。一般的にスーパーオキシドアニオンラジカル(通称スーパーオキシド)、ヒドロキシルラジカル、過酸化水素、一重項酸素の4種類とされる。活性酸素は、酸素分子が不対電子を捕獲することによってスーパーオキシド、ヒドロキシルラジカル、過酸化水素、という順に生成する。スーパーオキシドは酸素分子から生成される最初の還元体であり、他の活性酸素の前駆体であり、生体にとって重要な役割を持つ一酸化窒素と反応してその作用を消滅させる。活性酸素の中でもヒドロキシルラジカルはきわめて反応性が高いラジカルであり、活性酸素による多くの生体損傷はヒドロキシルラジカルによるものとされている吉川 1997 p.10。過酸化水素の反応性はそれほど高くなく、生体温度では安定しているが金属イオンや光により容易に分解してヒドロキシルラジカルを生成する吉川 1997 p.9。活性酸素は1 日に細胞あたり約10 億個発生し、これに対して生体の活性酸素消去能力(抗酸化機能)が働くものの活性酸素は細胞内のDNAを損傷し,平常の生活でもDNA 損傷の数は細胞あたり一日数万から数10 万個になるがこのDNA 損傷はすぐに修復される(DNA修復)。.

新しい!!: DNA修復と活性酸素 · 続きを見る »

温泉藻

温泉藻(おんせんそう、hot spring algae)とは、温泉の源泉付近や流路、浴槽などに棲息する藻類のことである。一般的な生物であれば生育に支障をきたす50-80 ℃の環境に適応した極限環境微生物である。.

新しい!!: DNA修復と温泉藻 · 続きを見る »

減数分裂

減数分裂 (げんすうぶんれつ、Meiose、meiosis) は真核生物の細胞分裂の様式の一つ。動物では配偶子(コケ・シダ類などでは胞子)を形成する際に行われ、生じた娘細胞では染色体数が分裂前の細胞の半分になる。一方、細胞が通常増殖する際に取る形式は有糸分裂あるいは体細胞分裂と呼ばれる。様式において体細胞分裂と異なる点は、染色体の複製の後に相同染色体が対合し、中間でDNAを複製することなしに二回連続して細胞分裂(減数第一分裂、第二分裂)が起こることである。英語で減数分裂を意味する はギリシャ語で「減少」の意。 減数分裂は19世紀後半に予見されていた現象である。受精では卵子と精子から一組ずつ染色体が供給され、二倍体細胞は母系由来と父系由来の染色体を一セット持っていることが明らかにされると、受精に先立ってあらかじめ染色体の減数が行われる必要があることが考えられた。実際の観察は、ウォルター・S・サットンによってバッタの生殖細胞で報告された。ここから遺伝子が染色体上にあるとする染色体説が提唱されている。.

新しい!!: DNA修復と減数分裂 · 続きを見る »

日焼け

日焼け(ひやけ)とは、紫外線を皮膚に浴びることにより、皮膚が赤く炎症を起こす急性症状(サンバーン )と、メラニン色素が皮膚表面に沈着すること(サンタン )である。.

新しい!!: DNA修復と日焼け · 続きを見る »

5-メチルシトシン

5-メチルシトシン(5mC)はDNA塩基の一つであるシトシンがメチル化されたもので、遺伝子転写の調整に関与している。 シトシンがメチル化されると、転写過程に変化はないが遺伝子発現に変化が生ずる。(この分野の研究はエピジェネティクスと呼ばれる。) 5mCはヌクレオシドに取り込まれて5-メチルシチジンとなる。 5mCでは、メチル基は六員環の5位の炭素原子に付加される。(図の6時方向の窒素原子(NH)から反時計回りに数える。2時方向からではない。) このメチル基はシトシンと5mCとを区別する特徴である。.

新しい!!: DNA修復と5-メチルシトシン · 続きを見る »

ここにリダイレクトされます:

DNA修復機構DNA修復酵素DNA損傷損傷修復遺伝子修復

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »