ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

雷と電気

ショートカット: 違い類似点ジャカード類似性係数参考文献

雷と電気の違い

雷 vs. 電気

住宅近郊への落雷 稲妻 雷(かみなり、いかずち)とは、雲と雲との間、あるいは雲と地上との間の放電によって、光と音を発生する自然現象のこと。 なお、ここでは「気象現象あるいは神話としての雷」を中心に述べる。雷の被害とその対策・回避方法については「落雷」を参照のこと。. 電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

雷と電気間の類似点

雷と電気は(ユニオンペディアに)共通で16ものを持っています: 帯電ボルト (単位)ボルト毎メートルアンペアジュール光速避雷針静電気電子電圧電磁波電荷電流放電

帯電

帯電(たいでん)は、物体が電気を帯びる現象である。 別の物体から電子を奪った場合には負に帯電し、逆の場合は正に帯電する。奪うことを引き起こす力は別に議論されなければならないが、帯電したまま動かずにいる電気を静電気という。絶縁体同士を摩擦することなどにより、この現象を起こすことができる。たとえばエボナイト棒を乾いた布でこすったり、プラスティックの下敷きで髪をこすったりすると、それぞれ帯電する。帯電した物体が他の物体を引き寄せるなどの性質(クーロン力)を持っていることは、古代から知られていた。近代になってから、この現象の本格的な研究が始まり、これをきっかけに、電磁気学が発展していった。近年ではこうした帯電現象を利用した様々な装置が日常生活に浸透してきている。 Category:静電気 Category:物理化学の現象.

帯電と雷 · 帯電と電気 · 続きを見る »

ボルト (単位)

ボルト(volt、記号:V)は、電圧・電位差・起電力の単位である。名称は、ボルタ電池を発明した物理学者アレッサンドロ・ボルタに由来する。 1ボルトは、以下のように定義することができる。表現の仕方が違うだけで、いずれも値は同じである。.

ボルト (単位)と雷 · ボルト (単位)と電気 · 続きを見る »

ボルト毎メートル

ボルト毎メートル(ボルトまいメートル、記号: V/m)は、電界の強さ(電界強度・電場強度または単に電界・電場ともいう)の単位である。 電界とは、空間中に電荷が存在することによって引き起こされる電位の勾配のことであり、電界の強さは単位長さ当たりの電位によって示される。ボルト毎メートルは、電位の単位ボルト(V)を長さの単位メートル(m)で除したものである。 日本の計量単位令では、上記のような定義ではなく、「毎メートル真空中において1クーロン(C)の電気量を有する無限に小さい静止している帯電体に働く力が1ニュートン(N)である電界の強さ」(N/C)と定義されている。J.

ボルト毎メートルと雷 · ボルト毎メートルと電気 · 続きを見る »

アンペア

アンペア(ampere 、記号: A)、は電流(量の記号、直流:I, 交流:i )の単位であり、国際単位系(SI)の7つの基本単位の一つである。 アンペアという名称は、電流と磁界との関係を示した「アンペールの法則」に名を残すフランスの物理学者、アンドレ=マリ・アンペール(André-Marie Ampère)に因んでいる共立化学大辞典第 26 版 (1981)。。 SIで定められた単位記号は"A"であるが、英語圏ではampと略記されることがあるSI supports only the use of symbols and deprecates the use of abbreviations for units.

アンペアと雷 · アンペアと電気 · 続きを見る »

ジュール

ュール(joule、記号:J)は、エネルギー、仕事、熱量、電力量の単位である。その名前はジェームズ・プレスコット・ジュールに因む。 1 ジュールは標準重力加速度の下でおよそ 102.0 グラム(小さなリンゴくらいの重さ)の物体を 1 メートル持ち上げる時の仕事に相当する。.

ジュールと雷 · ジュールと電気 · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

光速と雷 · 光速と電気 · 続きを見る »

避雷針

避雷針 草葺き屋根の稜線に避雷用の仕掛けが施してある。 木造の教会。避雷針とそこから地面まで延びるケーブルが見える。 東京タワーの避雷針 Václav Prokop Diviš が発明した "Machina meteorologica" は避雷針のような働きをする。 避雷針(ひらいしん、Lightning rod)は建築物を雷・落雷から保護する仕組みのひとつ。 地面と空中との電位差を緩和し落雷の頻度を下げ、また落雷の際には避雷針に雷を呼び込み地面へと電流を逃がすことで建物などへの被害を防ぐ。そのため、「雷を避ける針」という表記ではあるが、実際には必ずしも雷をはねのけるものではなく、字義とは逆に避雷針へ雷を呼び寄せる、いわば「導雷針」ともなる。.

避雷針と雷 · 避雷針と電気 · 続きを見る »

静電気

静電気(せいでんき、static electricity)とは、静止した電荷によって引き起こされる物理現象のこと。.

雷と静電気 · 電気と静電気 · 続きを見る »

住宅近郊への落雷 稲妻 雷(かみなり、いかずち)とは、雲と雲との間、あるいは雲と地上との間の放電によって、光と音を発生する自然現象のこと。 なお、ここでは「気象現象あるいは神話としての雷」を中心に述べる。雷の被害とその対策・回避方法については「落雷」を参照のこと。.

雷と雷 · 雷と電気 · 続きを見る »

電(いなずま、いなづま、でん).

雷と電 · 電と電気 · 続きを見る »

電子

電子(でんし、)とは、宇宙を構成するレプトンに分類される素粒子である。素粒子標準模型では、第一世代の荷電レプトンに位置付けられる。電子は電荷−1、スピンのフェルミ粒子である。記号は e で表される。また、ワインバーグ=サラム理論において弱アイソスピンは−、弱超電荷は−である。.

雷と電子 · 電子と電気 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

雷と電圧 · 電圧と電気 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

雷と電磁波 · 電気と電磁波 · 続きを見る »

電荷

電荷(でんか、electric charge)は、素粒子が持つ性質の一つである。電気量とも呼ぶ。電荷の量を電荷量という。電荷量のことを単に電荷と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。.

雷と電荷 · 電気と電荷 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

雷と電流 · 電気と電流 · 続きを見る »

放電

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電、コロナ放電、グロー放電、アーク放電に分類される。(電極を使用しない放電についてはその他の放電を参照) もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。 典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。.

放電と雷 · 放電と電気 · 続きを見る »

上記のリストは以下の質問に答えます

雷と電気の間の比較

電気が292を有している雷は、327の関係を有しています。 彼らは一般的な16で持っているように、ジャカード指数は2.58%です = 16 / (327 + 292)。

参考文献

この記事では、雷と電気との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »