ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

過渡現象

索引 過渡現象

過渡現象(かとげんしょう、transient phenomena)は、ある定常状態から別の定常状態に変化するときに、いずれの状態とも異なり時間的に状態が変化する非定常状態になる現象のことである。.

19 関係: 定常状態交流強制振動微分方程式ラプラス変換初期値問題インダクタンスキルヒホッフの法則コンデンサ直流非定常状態電気工学電気回路RLC回路抵抗減衰振動演算子法方程式時定数

定常状態

定常状態(ていじょうじょうたい、steady state)とは、時間的に一定して変わらない状態を意味し、自然科学の各分野で用いられる概念である。 自然界において、たとえば小川は、上流などで雨が降らない限り、時間とともに川の流れの速度や流量が変わることはなく一定であり、この意味で定常状態にあると言える。.

新しい!!: 過渡現象と定常状態 · 続きを見る »

交流

三角波、鋸歯状波 交流(こうりゅう、)とは、時間とともに周期的に向きが変化する電流(交流電流)を示す言葉であり、「交番電流」の略。また、同様に時間とともに周期的に大きさとその正負が変化する電圧を交流電圧というが、電流・電圧の区別をせずに交流または交流信号と呼ぶこともある。 交流の代表的な波形は正弦波であり、狭義の交流は正弦波交流()を指すが、広義には周期的に大きさと向きが変化するものであれば正弦波に限らない波形のものも含む。正弦波以外の交流は非正弦波交流()といい、矩形波交流や三角波交流などがある。.

新しい!!: 過渡現象と交流 · 続きを見る »

強制振動

強制振動(きょうせいしんどう、英語:forced oscillation, forced vibration)とは、時間的に変動する外力・外場の影響を受けることによって、強制的に引き起こされる振動のことである。運動に対する抵抗を有するエネルギー散逸系において、振動の減衰を補うべく、外部から時間的に変動する外力・外場が与えられることによって、振動が継続される系である。ここでいう時間的に変動する外力・外場は必ずしも周期的である必要はなく地震波のような波形も含まれる。周期的でない波形でもフーリエ級数展開により、近似的に正弦波・余弦波の和として表現可能なので、線形系であればそれぞれの成分に対する応答の和として全体の振動応答が求められる。 正弦波または余弦波として加振波形を表すとき、線形系ではその振動数が系の固有振動数に近いとき、もしくは一致するとき、大きな振動が発生する。この現象を共振または共鳴と呼ぶ。しかし非線形系ではその名の通り入力と出力が線形関係(比例関係)にないので、より複雑な挙動となる。 強制振動が問題となるのはその応答(出力)が大きくなる場合であり、その意味では、現実に共振や共鳴が発生しその原因を究明する過程で強制振動が議論されることも多い。また構造物などの設計では可能な限り、使用条件において共振や共鳴が発生しないよう考慮するのが普通である。ただし発振回路のように高エネルギーの特定振動数波形を得る目的でこの特性を用いることもある。 なお、構造系の係数(機械的構造物であれば質量やばね剛性など)が時間的に変動する場合も振動が発生するが、これらは広義には強制振動とも考えられるが、通常は係数励振振動として別に扱われる。.

新しい!!: 過渡現象と強制振動 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 過渡現象と微分方程式 · 続きを見る »

ラプラス変換

関数解析学において、ラプラス変換(ラプラスへんかん、Laplace transform)とは、積分で定義される関数空間の間の写像(線型作用素)の一種。関数変換。 ラプラス変換の名はピエール=シモン・ラプラスにちなむ。 ラプラス変換によりある種の微分・積分は積などの代数的な演算に置き換わるため、制御工学などにおいて時間領域の(とくに超越的な)関数を別の領域の(おもに代数的な)関数に変換することにより、計算方法の見通しを良くするための数学的な道具として用いられる。 フーリエ変換を発展させて、より実用本位で作られた計算手法である。1899年に電気技師であったオリヴァー・ヘヴィサイドが回路方程式を解くための実用的な演算子を経験則として考案して発表し、後に数学者がその演算子に対し厳密に理論的な裏付けを行った経緯がある。理論的な根拠が曖昧なままで発表されたため、この計算手法に対する懐疑的な声も多かった。この「ヘヴィサイドの演算子」の発表の後に、多くの数学者達により数学的な基盤は1780年の数学者ピエール=シモン・ラプラスの著作にある事が指摘された(この著作においてラプラス変換の公式が頻繁に現れていた)。 従って、数学の中ではかなり応用寄りの分野である。ラプラス変換の理論は微分積分、線形代数、ベクトル解析、フーリエ解析、複素解析を基盤としているため、理解するためにはそれらの分野を習得するべきである。 これと類似の解法として、より数学的な側面から作られた演算子法がある。こちらは演算子の記号を多項式に見立て、代数的に変形し、公式に基づいて特解を求める方法である。.

新しい!!: 過渡現象とラプラス変換 · 続きを見る »

初期値問題

数学の微分方程式の分野における初期値問題(しょきちもんだい、Initial value problem)とは、未知関数のある点における値を初期条件として備えた常微分方程式のことを言う(コーシー問題とも呼ばれる)。物理学あるいは他の自然科学の分野において、あるシステムをモデル化することはある初期値問題を解くことと同義である場合が多い。そのような場合、微分方程式は与えられた初期条件に対してシステムがどのように時間発展するかを特徴付ける発展方程式と見なされる。.

新しい!!: 過渡現象と初期値問題 · 続きを見る »

インダクタンス

インダクタンス(inductance)は、コイルなどにおいて電流の変化が誘導起電力となって現れる性質である。誘導係数、誘導子とも言う。インダクタンスを目的とするコイルをインダクタといい、それに使用する導線を巻線という。.

新しい!!: 過渡現象とインダクタンス · 続きを見る »

キルヒホッフの法則

ルヒホッフの法則(キルヒホッフのほうそく).

新しい!!: 過渡現象とキルヒホッフの法則 · 続きを見る »

コンデンサ

ンデンサの形状例。この写真の中での分類としては、足のあるものが「リード形」、長方体のものが「チップ形」である 典型的なリード形電解コンデンサ コンデンサ(Kondensator、capacitor)とは、電荷(静電エネルギー)を蓄えたり、放出したりする受動素子である。キャパシタとも呼ばれる。(日本の)漢語では蓄電器(ちくでんき)などとも。 この素子のスペックの値としては、基本的な値は静電容量である。その他の特性としては印加できる電圧(耐圧)、理想的な特性からどの程度外れているかを示す、等価回路における、直列の誘導性を示す値と直列並列それぞれの抵抗値などがある。一般に国際単位系(SI)における静電容量の単位であるファラド(記号: F)で表すが、一般的な程度の容量としてはそのままのファラドは過大であり、マイクロファラド(μF.

新しい!!: 過渡現象とコンデンサ · 続きを見る »

直流

流の波形 直流(ちょくりゅう、Direct Current, DC)は、時間によって大きさが変化しても流れる方向(正負)が変化しない「直流電流」の事である。同様に、時間によって方向が変化しない電圧を直流電圧という。狭義には、方向だけでなく大きさも変化しない電流、電圧のことを指し、流れる方向が一定で、電流・電圧の大きさが変化するもの(右図の下2つ)は脈流(pulsating current)という。直流と異なり、周期的に方向が変化する電流を交流という。.

新しい!!: 過渡現象と直流 · 続きを見る »

非定常状態

非定常状態(ひていじょうじょうたい、Unsteady state)は、さまざまな現象において、ある安定な状態に到達するまでの過渡的な過程を指す。定常状態の反対概念である。.

新しい!!: 過渡現象と非定常状態 · 続きを見る »

電気工学

電気工学(でんきこうがく、electrical engineering)は、電気や磁気、光(電磁波)の研究や応用を取り扱う工学分野である。電気磁気現象が広汎な応用範囲を持つ根源的な現象であるため、通信工学、電子工学をはじめ、派生した技術でそれぞれまた学問分野を形成している。電気の特徴として「エネルギーの輸送手段」としても「情報の伝達媒体」としても大変有用であることが挙げられる。この観点から、前者を「強電」、後者を「弱電」と二分される。.

新しい!!: 過渡現象と電気工学 · 続きを見る »

電気回路

電気回路(でんきかいろ、electric(al) circuit)は、抵抗器(抵抗)、インダクタ、コンデンサ、スイッチなどの電気的素子が電気伝導体でつながった電流のループ(回路)である。 電気回路は、電流の流れのための閉ループを持っていて、2つ以上の電気的素子が接続されている。 「回路」の語義的にはループになっているものだけであり、また電流は基本的にはその性質として、ループになっていなければ流れないものであるが、アンテナやアースのように開放端になっている部分も通例として含めている。対象が電子工学的(弱電)であるものは電子回路と言う。 例外的な分野の例ではあるが、主に数ギガヘルツの電磁波(電波)を伝播させる給電線である導波管をコンポーネント単位で、加工・細工するなどして、中空の導波管内を伝播する電磁波に直接作用させる形で構成した電気回路を立体回路と言う。これらは、基本的にループを構成せず、電気伝導体を介さない上記の電気回路の概念とは少し異なるものだが、電気回路の延長線上としてマイクロ波などの高周波領域であつかわれている。 導波管は金属の管であり、加工により通常の電気回路にあるような電気的素子である容量性(コンデンサ)、誘導性(インダクタ)、短絡(ショート)、抵抗減衰、分岐などを高周波領域で実現することが出来る。 これらは衛星通信やマイクロ波加熱、プラズマ生成など用途に応じて高出力(電力)で、かつ高周波の無線電波分野で用いられ、立体回路が構成される導波管は主に中空の方形導波管が多い。.

新しい!!: 過渡現象と電気回路 · 続きを見る »

RLC回路

RLC回路(RLC circuit)は、抵抗器 (R)、コイル (L)、コンデンサ (C) を直列または並列に接続した電気回路である。LCR回路、共振回路、同調回路とも呼ぶ。この構成によって調和振動子を形成する。 RLC回路はラジオや通信工学や発振回路で様々な応用がある。周波数の全スペクトルから特定の信号の狭い帯域幅を選択するのに使うこともできる。例えば、アナログ式のAMやFMラジオではRLC回路を選局に使っている。典型的な構成では、可変コンデンサが選局用ダイヤルに繋がっていて、Cの値を変化させることで同調する周波数を変化させる。 RLC回路の任意の箇所の電圧や電流は2階微分方程式で表せる。.

新しい!!: 過渡現象とRLC回路 · 続きを見る »

抵抗

抵抗(ていこう).

新しい!!: 過渡現象と抵抗 · 続きを見る »

減衰振動

減衰振動(げんすいしんどう、damped oscillation、damped vibration)とは、振幅が時間とともに徐々に小さくなるような振動現象である。単振動などは永久に動き続ける運動であるが、実際にそのような実験を行うと、空気抵抗や摩擦力などの抵抗力を受け、いずれは停止してしまう。そのような運動を減衰振動と呼ぶ。.

新しい!!: 過渡現象と減衰振動 · 続きを見る »

演算子法

演算子法(えんざんしほう)とは、解析学の問題、特に微分方程式を、代数的問題(普通は多項式方程式)に変換して解く方法。オリヴァー・ヘヴィサイドの貢献が特に大きいので「ヘヴィサイドの演算子法」とも呼ばれるが、厳密な理論化はその後の数学者たちにより行われた。.

新しい!!: 過渡現象と演算子法 · 続きを見る »

方程式

14''x'' + 15.

新しい!!: 過渡現象と方程式 · 続きを見る »

時定数

物理学、工学および社会科学において、時定数(じていすう、ときていすう、ときじょうすう、time constant 項目「時定数」より。)とは、線型時不変系(LTIシステム)における1次の周波数応答を示す値である。ギリシャ文字の τ で表される。過渡現象の応答速度の指標としても理解される。の邦訳語としては「ときていすう」であるとする説もある。学術用語としては「じていすう」、JISでは「ときじょうすう」としている。 例として電子回路のRC回路(抵抗器-コンデンサ)、RL回路(抵抗器-コイル)がある。その値は磁気テープ、送信機、受信機、レコードおよび再生装置、デジタルフィルタなどの信号処理系における周波数応答の特徴を表すために用い、1次の線型系としてモデル化および近似する。同じような式の形であっても、電磁気学、機械工学、社会科学の順に、時定数が大きくなり、システムの監視、状態の管理方法が異なる。電気的手法よりも空圧を制御の積分や微分に使うような制御システムも時定数を用いる例として挙げられる。 物理的あるいは化学的には、時定数はシステムが目標値の (1 -e-1) に達するまでの時間を示す。あるいは外力が取り除かれたときに初期値の約37%に達するのに必要な時間でもある。工学、社会科学でも、約63.2%に達するまでの時間を取ると、電磁気学ではマイクロ秒、ミリ秒の事象が多く、機械工学ではミリ秒、秒の単位が多い。社会科学では、時間、日、週、月、年などの単位になることもある。時定数の大きさが、システムの分類に役立つ。.

新しい!!: 過渡現象と時定数 · 続きを見る »

ここにリダイレクトされます:

過渡応答過渡解析

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »