ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

磁石と電動機

ショートカット: 違い類似点ジャカード類似性係数参考文献

磁石と電動機の違い

磁石 vs. 電動機

磁石(じしゃく、、マグネット)は、二つの極(磁極)を持ち、双極性の磁場を発生させる源となる物体のこと。鉄などの強磁性体を引き寄せる性質を持つ。磁石同士を近づけると、異なる極は引き合い、同じ極は反発しあう。. 様々な電動機。006P型電池との比較。 電動機(でんどうき、Electric motor)とは、電気エネルギーを力学的エネルギーに変換する電力機器、原動機の総称。モーター、電気モーターとも呼ばれる「モーター」というカタカナ表記に関して、電気学会に於いては「モータ」という表記方を定めている他、電動機メーカーによっては「モーター」のドイツ語表記“Motor”の20世紀前半までドイツ語発音の模範とされた「舞台発音」に基づいた発音方に倣って「モートル」(或いは「モトール」)という表記方を用いているところが見られる《日本電産Webサイト内『』ページ後半に掲載されているコラム『モーターの語源』より;なお「モートル」という表記は、現在、少なくとも日立系列の日立産機システムと東芝系列の東芝産業機器システムに於いて、主にブランド名の中で用いられている》。 一般に、磁場(磁界)と電流の相互作用(ローレンツ力)による力を利用して回転運動を出力するものが多いが、直線運動を得るリニアモーターや磁場を用いず超音波振動を利用する超音波モータなども実用化されている。静電気力を利用した静電モーターも古くから知られている。 なお、本来、「モータ(ー)」("motor")という言葉は「動力」を意味し、特に電動機に限定した用語ではない。それゆえ、何らかの動力の役割を果たす装置は、モーターと形容されることもよくある(ロケットモーターなど)。 以下では、電磁力により回転力を生み出す一般的な電動機を中心に説明し、それ以外のリニアモーターや超音波モータは末尾で簡単に説明する。.

磁石と電動機間の類似点

磁石と電動機は(ユニオンペディアに)共通で9ものを持っています: 力学的エネルギーパナソニックウィリアム・スタージャン磁場超伝導電磁気学電気抵抗電流永久磁石

力学的エネルギー

力学的エネルギー(りきがくてきエネルギー、mechanical energy)とは、運動エネルギーと位置エネルギー(ポテンシャル)の和のことを指す。 保存力の場での質点の運動では力学的エネルギー(運動エネルギーと位置エネルギー(ポテンシャル)の和)が一定となる。これを、力学的エネルギー保存の法則(力学的エネルギー保存則)と言う。 これを式で書くと次のようになる。ただし、運動エネルギーを K、ポテンシャルを U、力学的エネルギーを E とする。 一般にこれが保存するとき(即ち、保存力のみが仕事をし、非保存力が仕事をしないとき)によく使われる概念である。エネルギーが保存する場合、エネルギーの総和は初期条件で決まる。運動エネルギー K は、 なので、 となり、ポテンシャルの範囲が決まってしまう。ポテンシャルは位置に依存する量なので、これは運動の領域が決まることになる。ポテンシャルの概形が分かれば運動の様子がある程度推測できる。例えば、調和振動のポテンシャルは、 である。(x0 は振動中心の位置ベクトル)これは変位の二乗の形になっている。これを知っているならば、ポテンシャルの底が x2 の形になっている場合は単振動をすることが分かる。単振り子のポテンシャルは三角関数で書ける。 十分に振幅が小さいときには単振動で近似できることが分かる。 力学的エネルギーは、熱力学での内部エネルギー(摩擦などを通してやりとりされる)や他のエネルギーに変わりうる。この場合、力学的エネルギーの保存は成立しなくなるが、エネルギー全体としては保存している。つまりこの場合は、より広義の意味でエネルギーは保存している(→エネルギー保存の法則)。.

力学的エネルギーと磁石 · 力学的エネルギーと電動機 · 続きを見る »

パナソニック

パナソニック株式会社()は、大阪府門真市に拠点を置く電機メーカー。白物家電などのエレクトロニクス分野をはじめ、住宅分野や車載分野などを手がける。国内電機業界では日立製作所、ソニーに次いで3位。.

パナソニックと磁石 · パナソニックと電動機 · 続きを見る »

ウィリアム・スタージャン

ウィリアム・スタージャン(William Sturgeon、1783年5月22日 - 1850年12月4日)は、イギリスの物理学者で、最初の電磁石とイギリス初の実用的電動機を作った発明家である。.

ウィリアム・スタージャンと磁石 · ウィリアム・スタージャンと電動機 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

磁場と磁石 · 磁場と電動機 · 続きを見る »

超伝導

超伝導(ちょうでんどう、superconductivity)とは、特定の金属や化合物などの物質を非常に低い温度へ冷却したときに、電気抵抗が急激にゼロになる現象。「超電導」と表記されることもある。1911年、オランダの物理学者ヘイケ・カメルリング・オンネスにより発見された。この現象と同時に、マイスナー効果により外部からの磁力線が遮断されることから、電気抵抗の測定によらなくとも、超伝導状態が判別できる。この現象が現れるときの温度は超伝導転移温度と呼ばれ、この温度を室温程度に上昇させること(室温超伝導)は、現代物理学の重要な研究目標の一つ。.

磁石と超伝導 · 超伝導と電動機 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

磁石と電磁気学 · 電動機と電磁気学 · 続きを見る »

電気抵抗

電気抵抗(でんきていこう、レジスタンス、electrical resistance)は、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。.

磁石と電気抵抗 · 電動機と電気抵抗 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

磁石と電流 · 電動機と電流 · 続きを見る »

永久磁石

永久磁石(えいきゅうじしゃく、permanent magnet)とは、外部から磁場や電流の供給を受けることなく磁石としての性質を比較的長期にわたって保持し続ける物体のことである。強磁性ないしはフェリ磁性を示す物体であってヒステリシスが大きく常温での減磁が少ないものを磁化して用いる。永久磁石材料に関するJIS規格としてJIS C2502、その試験法に関する規格としてJIS C2501が存在する。 実例としてはアルニコ磁石、フェライト磁石、ネオジム磁石などが永久磁石である。これに対して、電磁石や外部磁場による磁化を受けた時にしか磁石としての性質を持たない軟鉄などは一時磁石と呼ばれる。.

永久磁石と磁石 · 永久磁石と電動機 · 続きを見る »

上記のリストは以下の質問に答えます

磁石と電動機の間の比較

電動機が100を有している磁石は、183の関係を有しています。 彼らは一般的な9で持っているように、ジャカード指数は3.18%です = 9 / (183 + 100)。

参考文献

この記事では、磁石と電動機との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »