ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

磁場と磁性

ショートカット: 違い類似点ジャカード類似性係数参考文献

磁場と磁性の違い

磁場 vs. 磁性

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。. 物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

磁場と磁性間の類似点

磁場と磁性は(ユニオンペディアに)共通で16ものを持っています: 地磁気マクスウェルの方程式ローレンツ力ビオ・サバールの法則ニュートンエルステッドクーロンの法則CGS単位系磁力磁化磁石磁束密度電気電流核磁気共鳴画像法

地磁気

地磁気(ちじき、、)は、地球が持つ磁性(磁気)である。及び、地磁気は、地球により生じる磁場(磁界)である。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)である。地磁気の大きさの単位は、SI単位系の磁束密度の単位であるテスラ(T)である。通常、地球の磁場はとても弱いので、「nT(ナノテスラ)」が用いられる。地球物理学で地磁気の磁束密度を表すのに使用されたガンマ (γ) は、10テスラ.

地磁気と磁場 · 地磁気と磁性 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

マクスウェルの方程式と磁場 · マクスウェルの方程式と磁性 · 続きを見る »

ローレンツ力

ーレンツ力(ローレンツりょく、Lorentz force)は、電磁場中で運動する荷電粒子が受ける力のことである。 名前はヘンドリック・ローレンツに由来する。.

ローレンツ力と磁場 · ローレンツ力と磁性 · 続きを見る »

ビオ・サバールの法則

ビオ・サバールの法則(ビオ・サバールのほうそく、Biot–Savart law)とは電流の存在によってその周りに生じる磁場を計算する為の電磁気学における法則である。この法則は静電場に対するクーロンの法則に対応する。 この法則によって磁場は距離、方向、およびその電流の大きさなどに依存することが論じられる。この法則は静的な近似の元ではアンペールの法則および磁場に対するガウスの法則と同等のものである。 1820年にフランスの物理学者ジャン=バティスト・ビオとフェリックス・サヴァールによって発見された。.

ビオ・サバールの法則と磁場 · ビオ・サバールの法則と磁性 · 続きを見る »

ニュートン

ニュートン(newton、記号: N)は、 国際単位系 (SI)における力の単位。1ニュートンは、1kgの質量を持つ物体に1m/s2の加速度を生じさせる力。名称は古典力学で有名なイギリスの物理学者アイザック・ニュートンにちなむものである。.

ニュートンと磁場 · ニュートンと磁性 · 続きを見る »

エルステッド

ルステッド(oersted, 記号:Oe)は、CGS電磁単位系・ガウス単位系における磁場(磁界)の強さの単位である。その名前は、1820年に電流の磁気作用を発見したハンス・クリスティアン・エルステッドにちなむ。 1エルステッドは、磁場の方向に沿って1センチメートル隔てた2点間の起磁力が1ギルバートである磁場の強さと定義されている。また、半径1センチメートルの1巻きの円形の閉回路に1/2πアンペアの電流が流れている時に、閉回路の中央に生じる磁場の強さと定義することもできる。 SIにおける磁場の強さの単位はアンペア毎メートル(A/m)である。1ギルバートは10/(4π)アンペア(アンペア回数)に等しいので、1 Oe.

エルステッドと磁場 · エルステッドと磁性 · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

クーロンの法則と磁場 · クーロンの法則と磁性 · 続きを見る »

CGS単位系

CGS単位系(シージーエスたんいけい)は、センチメートル (centimetre)・グラム (gram)・秒 (second) を基本単位とする、一貫性のある単位系である。"CGS" は基本単位の頭文字をつなげたものである。 この単位系は1832年にカール・フリードリヒ・ガウスが提唱したのに始まる、物理学における量を距離・質量・時間の3つの独立な次元によって表そうとするものである。今日的な観点からは電磁気学を扱うには電荷の次元が欠けていたが、その導入は後のジョヴァンニ・ジョルジによる理論的な整理を待たなくてはならなかった。現在では電荷の次元が導入された、CGS静電単位系やCGS電磁単位系(後述)などとして用いられる。.

CGS単位系と磁場 · CGS単位系と磁性 · 続きを見る »

磁力

磁力(じりょく)とは、磁石や電流が発生させる磁場により、磁石や電流が流れている導体どうし、あるいはそれらと強磁性体の間に発生する力である。同種の磁極の間には退け合う力が、異種の磁極では引き合う力が働く。この力のことを磁力、または磁気力(じきりょく)という。.

磁力と磁場 · 磁力と磁性 · 続きを見る »

磁化

磁化(じか、magnetization)とは、磁性体に外部磁場をかけたときに、その磁性体が磁気的に分極して磁石となる現象のこと。また、磁性体の磁化の程度を表す物理量も磁化と呼ぶ。磁気分極(magnetic polarization)とも呼ばれる。 強磁性体は磁場をかけて磁化させた後に磁場を取り除いた後も分極が残り永久磁石となる残留磁化と呼ばれる現象があるが、これも磁化と呼ぶ場合がある。.

磁化と磁場 · 磁化と磁性 · 続きを見る »

磁石

磁石(じしゃく、、マグネット)は、二つの極(磁極)を持ち、双極性の磁場を発生させる源となる物体のこと。鉄などの強磁性体を引き寄せる性質を持つ。磁石同士を近づけると、異なる極は引き合い、同じ極は反発しあう。.

磁場と磁石 · 磁性と磁石 · 続きを見る »

磁束密度

磁束密度(じそくみつど、)とは、文字通り磁束の単位面積当たりの面密度のことであるが、単に磁場と呼ばれることも多い。磁束密度はベクトル量である。 記号 B で表されることが多い。国際単位系 (SI)ではテスラ (T)、もしくはウェーバ毎平方メートル (Wb/m2)である。.

磁場と磁束密度 · 磁性と磁束密度 · 続きを見る »

鉄(てつ、旧字体/繁体字表記:鐵、iron、ferrum)は、原子番号26の元素である。元素記号は Fe。金属元素の1つで、遷移元素である。太陽や他の天体にも豊富に存在し、地球の地殻の約5%を占め、大部分は外核・内核にある。.

磁場と鉄 · 磁性と鉄 · 続きを見る »

電気

電気(でんき、electricity)とは、電荷の移動や相互作用によって発生するさまざまな物理現象の総称である。それには、雷、静電気といった容易に認識可能な現象も数多くあるが、電磁場や電磁誘導といったあまり日常的になじみのない概念も含まれる。 雷は最も劇的な電気現象の一つである。 電気に関する現象は古くから研究されてきたが、科学としての進歩が見られるのは17世紀および18世紀になってからである。しかし電気を実用化できたのはさらに後のことで、産業や日常生活で使われるようになったのは19世紀後半だった。その後急速な電気テクノロジーの発展により、産業や社会が大きく変化することになった。電気のエネルギー源としての並外れた多才さにより、交通機関の動力源、空気調和、照明、などほとんど無制限の用途が生まれた。商用電源は現代産業社会の根幹であり、今後も当分の間はその位置に留まると見られている。また、多様な特性から電気通信、コンピュータなどが開発され、広く普及している。.

磁場と電気 · 磁性と電気 · 続きを見る »

電流

電流(でんりゅう、electric current電磁気学に議論を留める限りにおいては、単に と呼ぶことが多い。)は、電子に代表される荷電粒子他の荷電粒子にはイオンがある。また物質中の正孔は粒子的な性格を持つため、荷電粒子と見なすことができる。の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。 電線などの金属導体内を流れる電流のように、多くの場合で電流を構成している荷電粒子は電子であるが、電子の流れは電流と逆向きであり、直感に反するものとなっている。電流の向きは正の電荷が流れる向きとして定義されており、負の電荷を帯びる電子の流れる向きは電流の向きと逆になる。これは電子の詳細が知られるようになったのが19世紀の末から20世紀初頭にかけての出来事であり、導電現象の研究は18世紀の末から進んでいたためで、電流の向きの定義を逆転させることに伴う混乱を避けるために現在でも直感に反する定義が使われ続けている。 電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。 国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A であるアンペアはSI基本単位の1つである。。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは または で表現される。.

磁場と電流 · 磁性と電流 · 続きを見る »

核磁気共鳴画像法

頭部のMRI(T1)画像 頭の頂部から下へ向けて連続撮影し、動画化したもの 核磁気共鳴画像法(かくじききょうめいがぞうほう、, MRI)とは、核磁気共鳴(, NMR)現象を利用して生体内の内部の情報を画像にする方法である。磁気共鳴映像法とも。.

核磁気共鳴画像法と磁場 · 核磁気共鳴画像法と磁性 · 続きを見る »

上記のリストは以下の質問に答えます

磁場と磁性の間の比較

磁性が153を有している磁場は、49の関係を有しています。 彼らは一般的な16で持っているように、ジャカード指数は7.92%です = 16 / (49 + 153)。

参考文献

この記事では、磁場と磁性との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »