ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

球充填と超球面

ショートカット: 違い類似点ジャカード類似性係数参考文献

球充填と超球面の違い

球充填 vs. 超球面

レンジの積み上げは球充填の具体的応用の1つでもある。 球充填(きゅうじゅうてん、sphere packing)とは、互いに重なり合わない球を並べて空間を充填することである。通常は同一の大きさの球と3次元ユークリッド空間を扱う。しかし、球の大きさが一様ではない場合や、2次元空間(その場合の球は円)や高次元空間(その場合の球は超球)、さらにはのような非ユークリッド空間にも適用できる。 典型的な球充填問題とは、ある空間について最も稠密に球を詰め込む配置を見出す問題である。空間全体に対する球によって占められた空間の比率を充填密度(density of arrangement)と呼ぶ。無限に広い空間への充填では、測定する体積によって局所的な充填密度が変わるため、通常は密度の平均を最大化するか、十分大きな体積を測定するときの漸近的な密度を最大化することを問題とする。 3次元空間の充填では、等しい大きさの球による最密充填は空間の74%を占める。等しい大きさの球によるランダム充填は一般に64%前後の密度を持ち、最も緩い充填は55%ぐらいになることが実験によって確かめられている。. 数学において、 次元球面(-じげんきゅうめん、n-sphere, n 球面)は普通の球面の ''n'' 次元空間への一般化である。任意の自然数 n に対して、半径 r の n 次元球面は中心点から距離 r にある (n + 1) 次元ユークリッド空間における点の集合として定義される。ここで半径 r は任意の正の実数でよい。したがって、原点を中心とする n 次元球面は によって定義される。これは (n + 1) 次元ユークリッド空間内に存在する n 次元多様体である。 特に:.

球充填と超球面間の類似点

球充填と超球面は(ユニオンペディアに)共通で4ものを持っています: ユークリッド空間円 (数学)球体等角写像

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

ユークリッド空間と球充填 · ユークリッド空間と超球面 · 続きを見る »

円 (数学)

数学において、円(えん)とは、平面(2次元ユークリッド空間)上の、定点 O からの距離が等しい点の集合でできる曲線のことをいう。ここで現れる定点 O を円の中心と呼ぶ。円には、その中心が1つあり、また1つに限る。中心から円周上の 1 点を結んだ線分を輻(や)とよび、その長さを半径というが、現在では輻のことを含めて半径と呼ぶことが多い。中心が点 O である円を、円 O と呼ぶ。定幅図形の一つ。 円が囲む部分、すなわち円の内部を含めて円ということもある。この場合は、曲線のことを円周という。これに対して、内部を含めていることを強調するときには円板という。また、三角形、四角形などと呼称を統一して、円形ということもある。 数学以外の分野ではこの曲線のことを「丸(まる)」という俗称で呼称することがある。 円: 中心、半径・直径、円周.

円 (数学)と球充填 · 円 (数学)と超球面 · 続きを見る »

球体

数学における球体(きゅうたい、ball)は球面の内側の空間全体を言う。それが境界点の全体である球面を全く含むとき閉球体(へいきゅうたい、closed ball)、全く含まないとき開球体(かいきゅうたい、open ball)と呼ばれる。 これらの概念は三次元ユークリッド空間のみならず、より低次または高次の空間、あるいはより一般の距離空間において定義することができる。-次元の球体は -次元(超)球体(あるいは短く -球体)と呼ばれ、その境界は(''n''−1)-次元(超)球面'''(あるいは短く -球面)と呼ばれる。例えばユークリッド平面における球体は円板のことであり、それを囲む境界は円周である。また、三次元ユークリッド空間における球体(通常の球体)は二次元球面(通常の球面)によって囲まれる体積を占める。 ユークリッド幾何学などの文脈において、球体 (ball) の意味でしばしば略式的に球 (sphere) と呼ぶ場合がある(球が球面の意である場合もある)。.

球体と球充填 · 球体と超球面 · 続きを見る »

等角写像

矩形格子(上)と等角写像 ''f'' によるその像(下)。''f'' が、90°で交差している2つの直線をなおも90°で交差している2つの曲線へ移していることが確認できる。 等角写像(とうかくしゃぞう、conformal transformation)とは、2次元以上のユークリッド空間からユークリッド空間への写像であって、任意の点の近傍の微小な2つの線分が、その成す角を保存するように写像されるものをいう。いいかえれば、座標変換の関数行列が回転行列のスカラー倍となるものである。即ち、平面上の一つの図形を他の図形に変換(写像)したとき、図形上の二曲線の交角はその写像によっても等しく保たれるような写像を等角写像と呼ぶ。一見すると、原形から大きく図形が変わったように見えても、対応する微小部分に注目すると、原形の図形と相似になっているのが、等角写像である。等角写像は、複素関数論と深い関係があり、工学上、流体の挙動の記述などにおいて非常に有用である。.

球充填と等角写像 · 等角写像と超球面 · 続きを見る »

上記のリストは以下の質問に答えます

球充填と超球面の間の比較

超球面が58を有している球充填は、46の関係を有しています。 彼らは一般的な4で持っているように、ジャカード指数は3.85%です = 4 / (46 + 58)。

参考文献

この記事では、球充填と超球面との関係を示しています。情報が抽出された各記事にアクセスするには、次のURLをご覧ください:

ヘイ!私たちは今、Facebook上です! »